pd.cut: 缓冲区的维数错误(预期为 1,得到 2)
pd.cut: Buffer has wrong number of dimensions (expected 1, got 2)
我有以下两段Python代码:
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000],
our_labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive']
pd.cut(ratio,
bins = our_bins,
right = False,
labels = our_labels)
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
pd.cut(ratio,
bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000],
right = False,
labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive'])
为什么后者输出一个类别正确的数组,而前者输出这个错误?
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
our_bins
不是列表而是列表的元组,因为您在行尾添加了逗号
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000], # <- HERE
所以:
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000]
our_labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive']
pd.cut(ratio,
bins = our_bins,
right = False,
labels = our_labels)
输出:
['Very Negative', 'Negative', 'Negative', 'Slightly Negative', 'Neutral', ..., 'Slightly Positive', 'Positive', 'Positive', 'Very Positive', 'Very Positive']
Length: 14
Categories (7, object): ['Very Negative' < 'Negative' < 'Slightly Negative' < 'Neutral' <
'Slightly Positive' < 'Positive' < 'Very Positive']
我有以下两段Python代码:
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000],
our_labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive']
pd.cut(ratio,
bins = our_bins,
right = False,
labels = our_labels)
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
pd.cut(ratio,
bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000],
right = False,
labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive'])
为什么后者输出一个类别正确的数组,而前者输出这个错误?
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
our_bins
不是列表而是列表的元组,因为您在行尾添加了逗号
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000], # <- HERE
所以:
import pandas
ratio = [0.01, 0.2, 0.45, 0.7, 0.9, 1.01, 1.05, 1.07, 1.23, 1.78, 2.56, 3.12, 5.01, 6.21]
our_bins = [0, 0.2, 0.5, 0.8334, 1.199, 1.999, 4.999, 1000]
our_labels = ['Very Negative', 'Negative', 'Slightly Negative', 'Neutral',
'Slightly Positive', 'Positive', 'Very Positive']
pd.cut(ratio,
bins = our_bins,
right = False,
labels = our_labels)
输出:
['Very Negative', 'Negative', 'Negative', 'Slightly Negative', 'Neutral', ..., 'Slightly Positive', 'Positive', 'Positive', 'Very Positive', 'Very Positive']
Length: 14
Categories (7, object): ['Very Negative' < 'Negative' < 'Slightly Negative' < 'Neutral' <
'Slightly Positive' < 'Positive' < 'Very Positive']