在标签不在训练集中的测试数据上使用 MultilabelBinarizer

Using MultilabelBinarizer on test data with labels not in the training set

鉴于这个简单的多标签分类示例(取自这个问题,use scikit-learn to classify into multiple categories

import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsRestClassifier
from sklearn import preprocessing
from sklearn.metrics import accuracy_score

X_train = np.array(["new york is a hell of a town",
                "new york was originally dutch",
                "the big apple is great",
                "new york is also called the big apple",
                "nyc is nice",
                "people abbreviate new york city as nyc",
                "the capital of great britain is london",
                "london is in the uk",
                "london is in england",
                "london is in great britain",
                "it rains a lot in london",
                "london hosts the british museum",
                "new york is great and so is london",
                "i like london better than new york"])
y_train_text = [["new york"],["new york"],["new york"],["new york"],    ["new york"],
            ["new york"],["london"],["london"],["london"],["london"],
            ["london"],["london"],["new york","london"],["new york","london"]]

X_test = np.array(['nice day in nyc',
               'welcome to london',
               'london is rainy',
               'it is raining in britian',
               'it is raining in britian and the big apple',
               'it is raining in britian and nyc',
               'hello welcome to new york. enjoy it here and london too'])

y_test_text = [["new york"],["london"],["london"],["london"],["new york", "london"],["new york", "london"],["new york", "london"]]


lb = preprocessing.MultiLabelBinarizer()
Y = lb.fit_transform(y_train_text)
Y_test = lb.fit_transform(y_test_text)

classifier = Pipeline([
('vectorizer', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(LinearSVC()))])

classifier.fit(X_train, Y)
predicted = classifier.predict(X_test)


print "Accuracy Score: ",accuracy_score(Y_test, predicted)

代码 运行 很好,并打印准确率分数,但是如果我将 y_test_text 更改为

y_test_text = [["new york"],["london"],["england"],["london"],["new york", "london"],["new york", "london"],["new york", "london"]]

我明白了

Traceback (most recent call last):
  File "/Users/scottstewart/Documents/scikittest/example.py", line 52, in <module>
     print "Accuracy Score: ",accuracy_score(Y_test, predicted)
  File "/Library/Python/2.7/site-packages/sklearn/metrics/classification.py", line 181, in accuracy_score
differing_labels = count_nonzero(y_true - y_pred, axis=1)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/scipy/sparse/compressed.py", line 393, in __sub__
raise ValueError("inconsistent shapes")
ValueError: inconsistent shapes

注意 'england' 标签的引入,它不在训练集中。我如何使用多标签分类,以便在引入 "test" 标签时,我仍然可以 运行 某些指标?或者这甚至可能吗?

编辑:感谢大家的回答,我想我的问题更多是关于 scikit 二值化器如何工作或应该如何工作。鉴于我的简短示例代码,我也希望我将 y_test_text 更改为

y_test_text = [["new york"],["new york"],["new york"],["new york"],["new york"],["new york"],["new york"]]

它会起作用——我的意思是我们已经适合那个标签,但在这种情况下我得到

ValueError: Can't handle mix of binary and multilabel-indicator

你可以,如果你也"introduce"训练 y 集中的新标签,像这样:

import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsRestClassifier
from sklearn import preprocessing
from sklearn.metrics import accuracy_score

X_train = np.array(["new york is a hell of a town",
                "new york was originally dutch",
                "the big apple is great",
                "new york is also called the big apple",
                "nyc is nice",
                "people abbreviate new york city as nyc",
                "the capital of great britain is london",
                "london is in the uk",
                "london is in england",
                "london is in great britain",
                "it rains a lot in london",
                "london hosts the british museum",
                "new york is great and so is london",
                "i like london better than new york"])
y_train_text = [["new york"],["new york"],["new york"],["new york"],    
                ["new york"],["new york"],["london"],["london"],         
                ["london"],["london"],["london"],["london"],
                ["new york","England"],["new york","london"]]

X_test = np.array(['nice day in nyc',
               'welcome to london',
               'london is rainy',
               'it is raining in britian',
               'it is raining in britian and the big apple',
               'it is raining in britian and nyc',
               'hello welcome to new york. enjoy it here and london too'])

y_test_text = [["new york"],["new york"],["new york"],["new york"],["new york"],["new york"],["new york"]]


lb = preprocessing.MultiLabelBinarizer(classes=("new york","london","England"))
Y = lb.fit_transform(y_train_text)
Y_test = lb.fit_transform(y_test_text)

print Y_test

classifier = Pipeline([
('vectorizer', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(LinearSVC()))])

classifier.fit(X_train, Y)
predicted = classifier.predict(X_test)
print predicted

print "Accuracy Score: ",accuracy_score(Y_test, predicted)

输出:

Accuracy Score:  0.571428571429

关键部分是:

y_train_text = [["new york"],["new york"],["new york"],
                ["new york"],["new york"],["new york"],
                ["london"],["london"],["london"],["london"],
                ["london"],["london"],["new york","England"],
                ["new york","london"]]

我们也插入了 "England"。 这是有道理的,因为如果分类器以前没有看到它,其他方式如何预测分类器?所以我们用这种方式创建了一个三标签分类问题。

已编辑:

lb = preprocessing.MultiLabelBinarizer(classes=("new york","london","England"))

您必须将 类 作为 arg 传递给 MultiLabelBinarizer() 并且它将与任何 y_test_text.

一起使用

简而言之 - 这是不适定问题。分类 假设所有标签都是预先已知的 ,二值化器也是如此。适合所有标签,然后训练你想要的任何子集。

正如另一条评论中提到的,我个人希望二值化器在 "transform" 时忽略未见的 类。 如果测试样本呈现的特征与训练中使用的特征不同,则使用二值化器结果的分类器可能反应不佳。

我解决了这个问题,只是从示例中删除了未见过的 类。我认为这是一种比动态更改拟合二值化器或(另一种选择)扩展它以允许忽略更安全的方法。

list(map(lambda names: np.intersect1d(lb.classes_, names), y_test_text))

没有运行你的实际代码