使用重叠截断剧集

Using foverlaps to truncate episodes

我正在努力思考如何使用 data.table::foverlaps() 生成新数据 table。在一个应用程序中,我想使用 foverlaps 来识别间隙,然后使用此信息来截断我的原始数据 table.

假设我有一个数据集 (df1),其中包含一家公司的 2 名员工 (id),期间的日期范围为 (start_dateend_date)他们在不同的项目中工作 (proj_id;“A”、“B”或“C”)。

library(data.table)
library(lubridate)
df1<-data.table(id = rep(1:2,each=3),
           start_date = ymd(c("1998-04-03","1999-03-08","2000-08-13",
                              "2005-03-03","2007-10-12","2014-02-23")),
           end_date = ymd(c("1999-03-07","2000-08-12","2021-04-23",
                            "2007-09-05","2014-02-22","2019-05-04")),
           proj_id = c("A","B","A","B","C","A"))

> df1
   id start_date   end_date proj_id
1:  1 1998-04-03 1999-03-07       A
2:  1 1999-03-08 2000-08-12       B
3:  1 2000-08-13 2021-04-23       A
4:  2 2005-03-03 2007-09-05       B
5:  2 2007-10-12 2014-02-22       C
6:  2 2014-02-23 2019-05-04       A

现在我有另一个数据集 (df2),它指定了我想从 df1 截断的时间。

df2 <- data.table(id = 1:2,
                  start_date = ymd("1998-07-20", "2006-06-12"),
                  end_date = ymd("1998-08-15", "2016-04-08"))

> df2
   id start_date   end_date
1:  1 1998-07-20 1998-08-15
2:  2 2006-06-12 2016-04-08

然后我可以使用 data.table::foverlaps() 来识别重叠的剧集:

> setkey(df1,id,start_date,end_date)
> foverlaps(df2, df1, type="any", 
+           by.x=c("id","start_date","end_date"))
   id start_date   end_date proj_id i.start_date i.end_date
1:  1 1998-04-03 1999-03-07       A   1998-07-20 1998-08-15
2:  2 2005-03-03 2007-09-05       B   2006-06-12 2016-04-08
3:  2 2007-10-12 2014-02-22       C   2006-06-12 2016-04-08
4:  2 2014-02-23 2019-05-04       A   2006-06-12 2016-04-08

我现在想使用此数据生成新版本的 df1,我通过截断上面确定的差距来生成新剧集。因此,我想要的 DT 是:

  id start_date   end_date proj_id
1:  1 1998-04-03 1998-07-19       A
2:  1 1998-08-16 1999-03-07       A
3:  1 1999-03-08 2000-08-12       B
4:  1 2000-08-13 2021-04-23       A
5:  2 2005-03-03 2006-06-11       B
6:  2 2016-04-09 2019-05-04       A
``` 

可能有更好的替代方法,但这可能会根据您的 foverlaps 结果起作用。

假设您使用 foverlaps 结果创建了另一个名为 df3 的 data.table:

df3 <- foverlaps(df2, df1, type = "any", by.x = c("id", "start_date", "end_date"))

然后您可以遍历每一行,并根据重叠添加 0、1 或 2 个日期范围(在结尾或开头截断,或者整个范围被遮挡)。

dt <- data.table(start_date = Date(), end_date = Date(), id = numeric(), proj_id = numeric())

for (i in seq_len(nrow(df3))) {
  if (df3$start_date[i] < df3$i.start_date[i]) {
    dt <- rbind(dt, data.table(start_date = df3$start_date[i], end_date = df3$i.start_date[i] - 1, id = df3$id[i], proj_id = df3$proj_id[i]))
  } 
  if (df3$end_date[i] > df3$i.end_date[i]) {
    dt <- rbind(dt, data.table(start_date = df3$i.end_date[i] + 1, end_date = df3$end_date[i], id = df3$id[i], proj_id = df3$proj_id[i]))
  }
}

最后,您可以从初始 df1 中删除 foverlaps 结果,因为已经确定了这些结果的新范围(使用 fsetdiff)。然后,您可以添加新的范围。

rbind(fsetdiff(df1, df3[,1:4]), dt)[order(id, start_date)]

输出

   id start_date   end_date proj_id
1:  1 1998-04-03 1998-07-19       A
2:  1 1998-08-16 1999-03-07       A
3:  1 1999-03-08 2000-08-12       B
4:  1 2000-08-13 2021-04-23       A
5:  2 2005-03-03 2006-06-11       B
6:  2 2016-04-09 2019-05-04       A