裁剪模板区域后,如何使用 matchTemplate 转换 x、y 坐标?
How do I translate x, y coordinates with matchTemplate once I've cropped the template area?
我正在使用 python 3.9.6 和 OpenCV 4.5.1
我正在尝试检测模板上的对象。我的模板是我的显示器的实时馈送,我的对象是 jpg 的。
问题:当我裁剪模板以加快检测速度时,我的鼠标开始点击错误的位置。
这只会在我裁剪模板后发生。我认为这是因为我在错误的时间在我的脚本中裁剪了我的模板。我的全监视器是 (0 , 0, 1920, 1080)
但我只想捕获 [220:900, 270:1590]
到目前为止,我已经遵循了 OpenCV 文档和一些在线教程,但我现在卡住了。
如何单击 img
(第三个代码块)而不是因模板裁剪不当而导致的不正确偏移?
我正在使用 win32gui 获取我的模板:
import numpy as np
import win32gui, win32ui, win32con
class WindowCapture:
# properties
w = 0
h = 0
hwnd = None
cropped_x = 0
cropped_y = 0
offset_x = 0
offset_y = 0
# constructor
def __init__(self, window_name=None):
# find the handle for the window we want to capture.
# if no window name is given, capture the entire screen
if window_name is None:
self.hwnd = win32gui.GetDesktopWindow()
else:
self.hwnd = win32gui.FindWindow(None, window_name)
if not self.hwnd:
raise Exception('Window not found: {}'.format(window_name))
# get the window size
window_rect = win32gui.GetWindowRect(self.hwnd)
self.w = window_rect[2] - window_rect[0]
self.h = window_rect[3] - window_rect[1]
# account for the window border and titlebar and cut them off
border_pixels = 0
titlebar_pixels = 0
self.w = self.w - (border_pixels * 2)
self.h = self.h - titlebar_pixels - border_pixels
self.cropped_x = border_pixels
self.cropped_y = titlebar_pixels
# set the cropped coordinates offset so we can translate screenshot
# images into actual screen positions
self.offset_x = window_rect[0] + self.cropped_x
self.offset_y = window_rect[1] + self.cropped_y
def get_screenshot(self):
# get the window image data
wDC = win32gui.GetWindowDC(self.hwnd)
dcObj = win32ui.CreateDCFromHandle(wDC)
cDC = dcObj.CreateCompatibleDC()
dataBitMap = win32ui.CreateBitmap()
dataBitMap.CreateCompatibleBitmap(dcObj, self.w, self.h)
cDC.SelectObject(dataBitMap)
cDC.BitBlt((0, 0), (self.w, self.h), dcObj, (self.cropped_x, self.cropped_y), win32con.SRCCOPY)
# convert the raw data into a format opencv can read
# dataBitMap.SaveBitmapFile(cDC, 'debug.bmp')
signedIntsArray = dataBitMap.GetBitmapBits(True)
img = np.fromstring(signedIntsArray, dtype='uint8')
img.shape = (self.h, self.w, 4)
# free resources
dcObj.DeleteDC()
cDC.DeleteDC()
win32gui.ReleaseDC(self.hwnd, wDC)
win32gui.DeleteObject(dataBitMap.GetHandle())
img = img[...,:3]
img = np.ascontiguousarray(img)
return img
@staticmethod
def list_window_names():
def winEnumHandler(hwnd, ctx):
if win32gui.IsWindowVisible(hwnd):
print(hex(hwnd), win32gui.GetWindowText(hwnd))
win32gui.EnumWindows(winEnumHandler, None)
以及用于我的对象检测的 OpenCV 和 numpy:
import cv2 as cv
import numpy as np
class Vision:
# properties
needle_img = None
needle_w = 0
needle_h = 0
method = None
# constructor
def __init__(self, needle_img_path, method=cv.TM_CCORR_NORMED):
self.needle_img = cv.imread(needle_img_path, cv.IMREAD_UNCHANGED)
# Save the dimensions of the needle image
self.needle_w = self.needle_img.shape[1]
self.needle_h = self.needle_img.shape[0]
# There are 6 methods to choose from:
# TM_CCOEFF, TM_CCOEFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_SQDIFF, TM_SQDIFF_NORMED
self.method = method
def find(self, haystack_img, threshold=0.5, debug_mode=None):
# run the OpenCV algorithm
result = cv.matchTemplate(haystack_img, self.needle_img, self.method)
# Get the all the positions from the match result that exceed our threshold
locations = np.where(result >= threshold)
locations = list(zip(*locations[::-1]))
rectangles = []
for loc in locations:
rect = [int(loc[0]), int(loc[1]), self.needle_w, self.needle_h]
# Add every box to the list twice in order to retain single (non-overlapping) boxes
rectangles.append(rect)
rectangles.append(rect)
# Apply group rectangles
rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps=0.5)
points = []
if len(rectangles):
line_color = (0, 255, 0)
line_type = cv.LINE_4
marker_color = (255, 0, 255)
marker_type = cv.MARKER_CROSS
# Loop over all the rectangles
for (x, y, w, h) in rectangles:
# Determine the center position
center_x = x + int(w/2)
center_y = y + int(h/2)
# Save the points
points.append((center_x, center_y))
if debug_mode == 'rectangles':
# Determine the box position
top_left = (x, y)
bottom_right = (x + w, y + h)
# Draw the box
cv.rectangle(haystack_img, top_left, bottom_right, color=line_color,
lineType=line_type, thickness=2)
elif debug_mode == 'points':
# Draw the center point
cv.drawMarker(haystack_img, (center_x, center_y),
color=marker_color, markerType=marker_type,
markerSize=40, thickness=2)
############ DISPLAYS MATCHES #############
if debug_mode:
cv.imshow('Matches', haystack_img)
return points
然后在此处的单独脚本中传递两个变量:
import cv2 as cv
import pyautogui as py
from windowcapture import WindowCapture
from vision import Vision
# initialize the WindowCapture class
# leave blank to capture the whole screen
haystack = WindowCapture()
# initialize the Vision class
needle = Vision('needle.jpg')
while(True):
# get an updated image of the game
screenshot = template.get_screenshot()
screenshotCropped = screenshot[220:900, 270:1590]
img = needle.find(screenshotCropped, 0.85, 'points')
if img:
py.moveTo(img[0])
导致问题的行是:screenshotCropped = screenshot[220:900, 270:1590]
如果它被删除,我正确地点击了对象。
我也尝试添加 border_pixels
和 titlebar_pixels
以允许我直接从 WindowCapture
裁剪,但我 运行 遇到了上面详述的相同问题。
如果我对你的代码的理解正确,当你裁剪图像时,你(还)没有考虑通过该裁剪引入的 X/Y 偏移量。
如果我正确理解你的例子,你的代码
screenshotCropped = screenshot[220:900, 270:1590]
是从 220-900
沿 y 轴(高度)和 270-1590
沿 x 轴(宽度)裁剪,是吗?如果是这样,试试
x_0, x_1 = 270,1590
y_0, y_1 = 220,900
screenshotCropped = screenshot[y_0:y_1, x_0:x_1]
...
if img:
x_coord = img[0][0] + x_0
y_coord = img[0][1] + y_0
py.moveTo(x_coord,y_coord)
如果您的裁剪区域发生变化,请相应地更新您的 (x_0, x_1, y_0, y_1)
值(在裁剪操作和 py.moveTo
操作中)?
我正在使用 python 3.9.6 和 OpenCV 4.5.1
我正在尝试检测模板上的对象。我的模板是我的显示器的实时馈送,我的对象是 jpg 的。
问题:当我裁剪模板以加快检测速度时,我的鼠标开始点击错误的位置。
这只会在我裁剪模板后发生。我认为这是因为我在错误的时间在我的脚本中裁剪了我的模板。我的全监视器是 (0 , 0, 1920, 1080)
但我只想捕获 [220:900, 270:1590]
到目前为止,我已经遵循了 OpenCV 文档和一些在线教程,但我现在卡住了。
如何单击 img
(第三个代码块)而不是因模板裁剪不当而导致的不正确偏移?
我正在使用 win32gui 获取我的模板:
import numpy as np
import win32gui, win32ui, win32con
class WindowCapture:
# properties
w = 0
h = 0
hwnd = None
cropped_x = 0
cropped_y = 0
offset_x = 0
offset_y = 0
# constructor
def __init__(self, window_name=None):
# find the handle for the window we want to capture.
# if no window name is given, capture the entire screen
if window_name is None:
self.hwnd = win32gui.GetDesktopWindow()
else:
self.hwnd = win32gui.FindWindow(None, window_name)
if not self.hwnd:
raise Exception('Window not found: {}'.format(window_name))
# get the window size
window_rect = win32gui.GetWindowRect(self.hwnd)
self.w = window_rect[2] - window_rect[0]
self.h = window_rect[3] - window_rect[1]
# account for the window border and titlebar and cut them off
border_pixels = 0
titlebar_pixels = 0
self.w = self.w - (border_pixels * 2)
self.h = self.h - titlebar_pixels - border_pixels
self.cropped_x = border_pixels
self.cropped_y = titlebar_pixels
# set the cropped coordinates offset so we can translate screenshot
# images into actual screen positions
self.offset_x = window_rect[0] + self.cropped_x
self.offset_y = window_rect[1] + self.cropped_y
def get_screenshot(self):
# get the window image data
wDC = win32gui.GetWindowDC(self.hwnd)
dcObj = win32ui.CreateDCFromHandle(wDC)
cDC = dcObj.CreateCompatibleDC()
dataBitMap = win32ui.CreateBitmap()
dataBitMap.CreateCompatibleBitmap(dcObj, self.w, self.h)
cDC.SelectObject(dataBitMap)
cDC.BitBlt((0, 0), (self.w, self.h), dcObj, (self.cropped_x, self.cropped_y), win32con.SRCCOPY)
# convert the raw data into a format opencv can read
# dataBitMap.SaveBitmapFile(cDC, 'debug.bmp')
signedIntsArray = dataBitMap.GetBitmapBits(True)
img = np.fromstring(signedIntsArray, dtype='uint8')
img.shape = (self.h, self.w, 4)
# free resources
dcObj.DeleteDC()
cDC.DeleteDC()
win32gui.ReleaseDC(self.hwnd, wDC)
win32gui.DeleteObject(dataBitMap.GetHandle())
img = img[...,:3]
img = np.ascontiguousarray(img)
return img
@staticmethod
def list_window_names():
def winEnumHandler(hwnd, ctx):
if win32gui.IsWindowVisible(hwnd):
print(hex(hwnd), win32gui.GetWindowText(hwnd))
win32gui.EnumWindows(winEnumHandler, None)
以及用于我的对象检测的 OpenCV 和 numpy:
import cv2 as cv
import numpy as np
class Vision:
# properties
needle_img = None
needle_w = 0
needle_h = 0
method = None
# constructor
def __init__(self, needle_img_path, method=cv.TM_CCORR_NORMED):
self.needle_img = cv.imread(needle_img_path, cv.IMREAD_UNCHANGED)
# Save the dimensions of the needle image
self.needle_w = self.needle_img.shape[1]
self.needle_h = self.needle_img.shape[0]
# There are 6 methods to choose from:
# TM_CCOEFF, TM_CCOEFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_SQDIFF, TM_SQDIFF_NORMED
self.method = method
def find(self, haystack_img, threshold=0.5, debug_mode=None):
# run the OpenCV algorithm
result = cv.matchTemplate(haystack_img, self.needle_img, self.method)
# Get the all the positions from the match result that exceed our threshold
locations = np.where(result >= threshold)
locations = list(zip(*locations[::-1]))
rectangles = []
for loc in locations:
rect = [int(loc[0]), int(loc[1]), self.needle_w, self.needle_h]
# Add every box to the list twice in order to retain single (non-overlapping) boxes
rectangles.append(rect)
rectangles.append(rect)
# Apply group rectangles
rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps=0.5)
points = []
if len(rectangles):
line_color = (0, 255, 0)
line_type = cv.LINE_4
marker_color = (255, 0, 255)
marker_type = cv.MARKER_CROSS
# Loop over all the rectangles
for (x, y, w, h) in rectangles:
# Determine the center position
center_x = x + int(w/2)
center_y = y + int(h/2)
# Save the points
points.append((center_x, center_y))
if debug_mode == 'rectangles':
# Determine the box position
top_left = (x, y)
bottom_right = (x + w, y + h)
# Draw the box
cv.rectangle(haystack_img, top_left, bottom_right, color=line_color,
lineType=line_type, thickness=2)
elif debug_mode == 'points':
# Draw the center point
cv.drawMarker(haystack_img, (center_x, center_y),
color=marker_color, markerType=marker_type,
markerSize=40, thickness=2)
############ DISPLAYS MATCHES #############
if debug_mode:
cv.imshow('Matches', haystack_img)
return points
然后在此处的单独脚本中传递两个变量:
import cv2 as cv
import pyautogui as py
from windowcapture import WindowCapture
from vision import Vision
# initialize the WindowCapture class
# leave blank to capture the whole screen
haystack = WindowCapture()
# initialize the Vision class
needle = Vision('needle.jpg')
while(True):
# get an updated image of the game
screenshot = template.get_screenshot()
screenshotCropped = screenshot[220:900, 270:1590]
img = needle.find(screenshotCropped, 0.85, 'points')
if img:
py.moveTo(img[0])
导致问题的行是:screenshotCropped = screenshot[220:900, 270:1590]
如果它被删除,我正确地点击了对象。
我也尝试添加 border_pixels
和 titlebar_pixels
以允许我直接从 WindowCapture
裁剪,但我 运行 遇到了上面详述的相同问题。
如果我对你的代码的理解正确,当你裁剪图像时,你(还)没有考虑通过该裁剪引入的 X/Y 偏移量。
如果我正确理解你的例子,你的代码
screenshotCropped = screenshot[220:900, 270:1590]
是从 220-900
沿 y 轴(高度)和 270-1590
沿 x 轴(宽度)裁剪,是吗?如果是这样,试试
x_0, x_1 = 270,1590
y_0, y_1 = 220,900
screenshotCropped = screenshot[y_0:y_1, x_0:x_1]
...
if img:
x_coord = img[0][0] + x_0
y_coord = img[0][1] + y_0
py.moveTo(x_coord,y_coord)
如果您的裁剪区域发生变化,请相应地更新您的 (x_0, x_1, y_0, y_1)
值(在裁剪操作和 py.moveTo
操作中)?