如何为使用 KFold CV 训练的分类模型绘制 ROC 和 PR 曲线
How to draw ROC and PR curves for a classification model trained with KFold CV
我正在使用 10 折交叉验证训练的这个 NN 模型应该如何绘制 ROC 和 PR 曲线?
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
from numpy import loadtxt
import numpy as np
import pandas as pd
from google.colab import files
uploaded = files.upload()
dataset = loadtxt('mod_dfn.csv', delimiter=',')
X = dataset[:,0:25]
y = dataset[:,25]
kfold = KFold(n_splits=10, shuffle=True)
fold_no = 1
for train, test in kfold.split(X, y):
model = Sequential()
model.add(Dense(12, input_dim=25, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print('------------------------------------------------------------------------')
print(f'Training for fold {fold_no} ...')
history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0)
scores = model.evaluate(X[test], y[test], verbose=0)
print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
acc_per_fold.append(scores[1] * 100)
loss_per_fold.append(scores[0])
fold_no = fold_no + 1
您可以使用 RocCurveDisplay
and PrecisionRecallDisplay
来达到这个目的。
尝试在代码的最后一行之前添加这些行 fold_no = fold_no + 1
,看看它是否适合您。
pred = model.predict(X[test])
# ROC curve
fpr, tpr, thresholds = metrics.roc_curve(y[test], pred)
roc_auc = metrics.auc(fpr, tpr)
roc_display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc)
roc_display.plot()
roc_display.figure_.savefig(f'./out/ROC_curve_for_fold#{fold_no}.jpeg')
# PR Curve
precision, recall, _ = metrics.precision_recall_curve(y[test], pred)
pr_display = metrics.PrecisionRecallDisplay(precision=precision, recall=recall)
pr_display.plot()
pr_display.figure_.savefig(f'./out/PR_curve_for_fold#{fold_no}.jpeg')
我正在使用 10 折交叉验证训练的这个 NN 模型应该如何绘制 ROC 和 PR 曲线?
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
from numpy import loadtxt
import numpy as np
import pandas as pd
from google.colab import files
uploaded = files.upload()
dataset = loadtxt('mod_dfn.csv', delimiter=',')
X = dataset[:,0:25]
y = dataset[:,25]
kfold = KFold(n_splits=10, shuffle=True)
fold_no = 1
for train, test in kfold.split(X, y):
model = Sequential()
model.add(Dense(12, input_dim=25, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print('------------------------------------------------------------------------')
print(f'Training for fold {fold_no} ...')
history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0)
scores = model.evaluate(X[test], y[test], verbose=0)
print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
acc_per_fold.append(scores[1] * 100)
loss_per_fold.append(scores[0])
fold_no = fold_no + 1
您可以使用 RocCurveDisplay
and PrecisionRecallDisplay
来达到这个目的。
尝试在代码的最后一行之前添加这些行 fold_no = fold_no + 1
,看看它是否适合您。
pred = model.predict(X[test])
# ROC curve
fpr, tpr, thresholds = metrics.roc_curve(y[test], pred)
roc_auc = metrics.auc(fpr, tpr)
roc_display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc)
roc_display.plot()
roc_display.figure_.savefig(f'./out/ROC_curve_for_fold#{fold_no}.jpeg')
# PR Curve
precision, recall, _ = metrics.precision_recall_curve(y[test], pred)
pr_display = metrics.PrecisionRecallDisplay(precision=precision, recall=recall)
pr_display.plot()
pr_display.figure_.savefig(f'./out/PR_curve_for_fold#{fold_no}.jpeg')