嵌套字典中的平均值

Average values in nested dictionary

我想创建一个新的值列表,my_qty 其中每个项目等于 d[key]['qty'] 中所有值的平均值,其中 d[key]['start date'] 匹配 my_dates。我想我已经接近了,但是我被嵌套部分挂断了。

import datetime
import numpy as np
my_dates = [datetime.datetime(2014, 10, 12, 0, 0), datetime.datetime(2014, 10, 13, 0, 0), datetime.datetime(2014, 10, 14, 0, 0)]

d = {
    'ID1' : {'start date': datetime.datetime(2014, 10, 12, 0, 0) , 'qty': 12},
    'ID2' : {'start date': datetime.datetime(2014, 10, 13, 0, 0) , 'qty': 34},
    'ID3' : {'start date': datetime.datetime(2014, 10, 12, 0, 0) , 'qty': 35},
    'ID4' : {'start date': datetime.datetime(2014, 10, 11, 0, 0) , 'qty': 40},
}

my_qty = []
for item in my_dates:
  my_qty.append([np.mean(x for x in d[key]['qty']) if d[key]['start date'] == my_dates[item]])

print my_qty

期望的输出:

[23.5,34,0]

阐明每个请求的输出:

[average of d[key]['qty'] where d[key]['start date '] == my_dates[0], average of d[key]['qty'] where d[key]['start date '] == my_dates[1], average of d[key]['qty'] where d[key]['start date '] == my_dates[2],]

纯python

简单的方法是将数量按日期分组到字典中:

import collections

quantities = collections.defaultdict(lambda: [])

for k,v in d.iteritems():
    quantities[v["start date"]].append(v["qty"])

然后 运行 在该字典上计算均值:

means = {k: float(sum(q))/len(q) for k,q in quantities.iteritems()}

给予:

>>> means
{datetime.datetime(2014, 10, 11, 0, 0): 40.0,
 datetime.datetime(2014, 10, 12, 0, 0): 23.5,
 datetime.datetime(2014, 10, 13, 0, 0): 34.0}

如果您想变得聪明,可以通过保持当前平均值和您所看到的值的总数来一次计算平均值。您甚至可以将其抽象为 class:

class RunningMean(object):
    def __init__(self, mean=None, n=0):
        self.mean = mean
        self.n = n

    def insert(self, other):
        if self.mean is None:
            self.mean = 0.0
        self.mean = (self.mean * self.n + other) / (self.n + 1)
        self.n += 1

    def __repr__(self):
        args = (self.__class__.__name__, self.mean, self.n)
        return "{}(mean={}, n={})".format(*args)

通过你的数据一次就会给你答案:

import collections
means = collections.defaultdict(lambda: RunningMean())
for k,v in d.iteritems():
    means[v["start date"]].insert(v["qty"])

与pandas

真正 简单的方法是使用 pandas 库,因为它是为这样的事情而制作的。这是一些代码:

import pandas as pd
df = pd.DataFrame.from_dict(d, orient="index")
means = df.groupby("start date").aggregate(np.mean)

给予:

>>> means
             qty
start date      
2014-10-11  40.0
2014-10-12  23.5
2014-10-13  34.0

下面是一些可以帮助您的工作代码:

for item in my_dates:
  nums = [ d[key]['qty'] for key in d if d[key]['start date'] == item ]
  if len(nums):
    avg = np.mean(nums)
  else:
    avg = 0
  print item, nums, avg

请注意,np.mean 不适用于空列表,因此您必须检查要平均的数字的长度。

一行答案:

mean_qty = [np.mean([i['qty'] for i in d.values()\
 if i.get('start date') == day] or 0) for day in my_dates] 

In [12]: mean_qty
Out[12]: [23.5, 34.0, 0.0]

or 0 的目的是 return 0 作为 OP 想要的,如果没有 qty 因为 np.mean 在空列表 returns nan 默认。

如果你需要速度,那么在 jme 出色的第二部分的基础上,你可以这样做(我通过在需要时不重新计算平均值将他的时间缩短了 3 倍):

class RunningMean(object):
    def __init__(self, total=0.0, n=0):
        self.total=total
        self.n = n

    def __iadd__(self, other):
        self.total += other
        self.n += 1
        return self

    def mean(self): 
        return (self.total/self.n if self.n else 0)

    def __repr__(self):
        return "RunningMean(total=%f, n=%i)" %(self.total, self.n)
means = defaultdict(RunningMean)
for v in d.values():
    means[v["start date"]] += (v["qty"])

Out[351]: 
[RunningMean(mean= 40.000000),
 RunningMean(mean= 34.000000),
 RunningMean(mean= 23.500000)]