加速多重排列
Speed up Multiset Permutations
我希望加快我的代码的速度,该代码需要大约 80 毫秒才能从 sympy
生成 300 个集合的 multiset_permutations
。理想情况下,这只需要几毫秒;而且项目越多,速度越慢。
我怎样才能使我的代码更快?多线程?或者转换为 C
?非常感谢任何有关加快速度的帮助。
import numpy as np
from time import monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_indices = 5
num_items = 300
indices = np.array([list(multiset_permutations(list(range(num_indices)))) for _ in range(num_items)])
print(indices)
[[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
...
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]]
print('Multiset Perms:', milli_time() - start_time, 'milliseconds')
Multiset Perms: 88 milliseconds
** 代码更新以减少 2/3 的额外计算**
import itertools
import numpy as np
from time import time, monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_colors = 5
color_range = list(range(num_colors))
total_media = 300
def all_perms(elements):
if len(elements) <= 1:
yield elements # Only permutation possible = no permutation
else:
# Iteration over the first element in the result permutation:
for (index, first_elmt) in enumerate(elements):
other_elmts = elements[:index]+elements[index+1:]
for permutation in all_perms(other_elmts):
yield [first_elmt] + permutation
multiset = list(multiset_permutations(color_range))
# multiset = list(itertools.permutations(color_range))
# multiset = list(all_perms(color_range))
_range = range(total_media)
perm_indices = np.array([multiset for _ in _range])
print('Multiset Perms:', milli_time() - start_time)
Multiset Perms: 34 milliseconds
首先,您不需要重新计算排列。
此外,np.array([multiset for _ in _range])
很昂贵,因为 Numpy 必须转换 multiset
total_media
次。您可以使用 np.array([multiset]).repeat(total_media, axis=0)
.
解决该问题
最后,sympy 并不是执行此类计算的最快实现。更快的实现包括使用 itertools
代替:
num_colors = 5
total_media = 300
color_range = list(range(num_colors))
multiset = list(set(itertools.permutations(color_range)))
perm_indices = np.array([multiset], dtype=np.int32).repeat(total_media, axis=0)
但是,这个基于 itertools 的实现不保留排列的顺序。如果这很重要,您可以在从 multiset
转换而来的 Numpy 数组上使用 np.sort
(使用特定轴并在应用 repeat
之前)。
在我的机器上,这大约需要 0.15 毫秒。
我希望加快我的代码的速度,该代码需要大约 80 毫秒才能从 sympy
生成 300 个集合的 multiset_permutations
。理想情况下,这只需要几毫秒;而且项目越多,速度越慢。
我怎样才能使我的代码更快?多线程?或者转换为 C
?非常感谢任何有关加快速度的帮助。
import numpy as np
from time import monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_indices = 5
num_items = 300
indices = np.array([list(multiset_permutations(list(range(num_indices)))) for _ in range(num_items)])
print(indices)
[[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
...
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]]
print('Multiset Perms:', milli_time() - start_time, 'milliseconds')
Multiset Perms: 88 milliseconds
** 代码更新以减少 2/3 的额外计算**
import itertools
import numpy as np
from time import time, monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_colors = 5
color_range = list(range(num_colors))
total_media = 300
def all_perms(elements):
if len(elements) <= 1:
yield elements # Only permutation possible = no permutation
else:
# Iteration over the first element in the result permutation:
for (index, first_elmt) in enumerate(elements):
other_elmts = elements[:index]+elements[index+1:]
for permutation in all_perms(other_elmts):
yield [first_elmt] + permutation
multiset = list(multiset_permutations(color_range))
# multiset = list(itertools.permutations(color_range))
# multiset = list(all_perms(color_range))
_range = range(total_media)
perm_indices = np.array([multiset for _ in _range])
print('Multiset Perms:', milli_time() - start_time)
Multiset Perms: 34 milliseconds
首先,您不需要重新计算排列。
此外,np.array([multiset for _ in _range])
很昂贵,因为 Numpy 必须转换 multiset
total_media
次。您可以使用 np.array([multiset]).repeat(total_media, axis=0)
.
最后,sympy 并不是执行此类计算的最快实现。更快的实现包括使用 itertools
代替:
num_colors = 5
total_media = 300
color_range = list(range(num_colors))
multiset = list(set(itertools.permutations(color_range)))
perm_indices = np.array([multiset], dtype=np.int32).repeat(total_media, axis=0)
但是,这个基于 itertools 的实现不保留排列的顺序。如果这很重要,您可以在从 multiset
转换而来的 Numpy 数组上使用 np.sort
(使用特定轴并在应用 repeat
之前)。
在我的机器上,这大约需要 0.15 毫秒。