Removing/keeping 特定列基于它们在 R 中的内容

Removing/keeping specific columns based off their contents in R

df:实际上有成千上万的变体和 ID

     variant1 variant2 variant3 variant4
ID1   0/0         0/0      0/0     0
ID2   0/0         0/0      0/0     0
ID3   0/0         0/0      1/1     0
ID4   0/0         0/0      0/0     1
ID5   0/1         0/0      0/0     0

期望的结果:

     variant1 variant2 variant3 variant4


ID3   0/0         0/0      1/1     0
ID4   0/0         0/0      0/0     1
ID5   0/1         0/0      0/0     0

我只想保留包含 0/1、1/1 或 1 的行。

我已经尝试 dt[grepl(0/1", df),] 每次迭代,但它似乎不起作用。

有基本的 R 或 data.table 方法吗?

我们可以使用 if_anydplyr

library(dplyr)
dt %>%
    filter(if_any(everything(), ~ . %in% c("0/1", "1/1", "1")))

-输出

    variant1 variant2 variant3 variant4
ID3      0/0      0/0      1/1        0
ID4      0/0      0/0      0/0        1
ID5      0/1      0/0      0/0        0

或使用base R

dt[ Reduce(`|`, lapply(dt, `%in%`, c("0/1", "1/1", "1"))),]

-输出

    variant1 variant2 variant3 variant4
ID3      0/0      0/0      1/1        0
ID4      0/0      0/0      0/0        1
ID5      0/1      0/0      0/0        0

可以在data.table

中使用相同的选项
library(data.table)
setDT(dt)[dt[, Reduce(`|`, lapply(.SD, `%in%`, c("0/1", "1/1", "1")))]]

数据

dt <- structure(list(variant1 = c("0/0", "0/0", "0/0", "0/0", "0/1"
), variant2 = c("0/0", "0/0", "0/0", "0/0", "0/0"), variant3 = c("0/0", 
"0/0", "1/1", "0/0", "0/0"), variant4 = c("0", "0", "0", "1", 
"0")), row.names = c("ID1", "ID2", "ID3", "ID4", "ID5"), class = "data.frame")