应用插补后 np.nan 值仍然存在
After applying imputation np.nan values is still present
我已经使用 SimpleImputer 更改 df,但空行仍然存在。我做错了什么?
from sklearn.impute import SimpleImputer
imp = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
imp.fit_transform(df)
msno.matrix(df)
Result
fit_transform
不是就地变换,它returns变换对象
from sklearn.impute import SimpleImputer
imp = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
data_without_nans = imp.fit_transform(df)
我已经使用 SimpleImputer 更改 df,但空行仍然存在。我做错了什么?
from sklearn.impute import SimpleImputer
imp = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
imp.fit_transform(df)
msno.matrix(df)
Result
fit_transform
不是就地变换,它returns变换对象
from sklearn.impute import SimpleImputer
imp = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
data_without_nans = imp.fit_transform(df)