如何为所有用户推荐 Spark ALS 中排名前 10 的产品?
How to recommend top 10 products in Spark ALS for all the users?
我们如何在 PySpark 中获得前 10 个推荐产品。我知道有 recommendProducts 之类的方法可以为单个用户推荐产品,而 predictAll 可以预测 {user,item} 对的评级。但是有没有一种有效的方法可以为所有用户输出每个用户的前 10 个项目?
我编写了这个函数,它将用户特征和产品特征乘以分区,以便它得到分布,然后它获得用户对每个产品的评分,并按评分对它们进行排序,并输出 8 个最热门推荐产品的列表。
#Collect product feature matrix
productFeatures = bestModel.productFeatures().collect()
productArray=[]
productFeaturesArray=[]
for x in productFeatures:
productArray.append(x[0])
productFeaturesArray.append(x[1])
matrix=np.matrix(productFeaturesArray)
productArrayBroadCast=sc.broadcast(productArray)
productFeaturesArraybroadcast=sc.broadcast(matrix.T)
def func(iterator):
userFeaturesArray = []
userArray = []
for x in iterator:
userArray.append(x[0])
userFeaturesArray.append(x[1])
userFeatureMatrix = np.matrix(userFeaturesArray)
userRecommendationArray = userFeatureMatrix*(productFeaturesArraybroadcast.value)
mappedUserRecommendationArray = []
#Extract ratings from the matrix
i=0
for i in range(0,len(userArray)):
ratingdict={}
j=0
for j in range(0,len(productArrayBroadcast.value)):
ratingdict[str(productArrayBroadcast.value[j])]=userRecommendationArray.item((i,j))
j=j+1
#Take the top 8 recommendations for the user
sort_apps=sorted(ratingdict.keys(), key=lambda x: x[1])[:8]
sort_apps='|'.join(sort_apps)
mappedUserRecommendationArray.append((userArray[i],sort_apps))
i=i+1
return [x for x in mappedUserRecommendationArray]
recommendations=model.userFeatures().repartition(2000).mapPartitions(func)
PySpark >= 1.6.0 提供 MatrixFactorizationModel.recommendProductsForUsers:
>> model.recommendProductsForUsers(3).take(2)
[(1,
(Rating(user=1, product=2975, rating=0.003626774788608227),
Rating(user=1, product=1322, rating=0.002494393082165332),
Rating(user=1, product=8746, rating=0.002176665942528324))),
(2,
(Rating(user=2, product=4060, rating=0.011020947406565042),
Rating(user=2, product=2332, rating=0.009479319983658458),
Rating(user=2, product=1979, rating=0.004587168057824856)))]
我们如何在 PySpark 中获得前 10 个推荐产品。我知道有 recommendProducts 之类的方法可以为单个用户推荐产品,而 predictAll 可以预测 {user,item} 对的评级。但是有没有一种有效的方法可以为所有用户输出每个用户的前 10 个项目?
我编写了这个函数,它将用户特征和产品特征乘以分区,以便它得到分布,然后它获得用户对每个产品的评分,并按评分对它们进行排序,并输出 8 个最热门推荐产品的列表。
#Collect product feature matrix
productFeatures = bestModel.productFeatures().collect()
productArray=[]
productFeaturesArray=[]
for x in productFeatures:
productArray.append(x[0])
productFeaturesArray.append(x[1])
matrix=np.matrix(productFeaturesArray)
productArrayBroadCast=sc.broadcast(productArray)
productFeaturesArraybroadcast=sc.broadcast(matrix.T)
def func(iterator):
userFeaturesArray = []
userArray = []
for x in iterator:
userArray.append(x[0])
userFeaturesArray.append(x[1])
userFeatureMatrix = np.matrix(userFeaturesArray)
userRecommendationArray = userFeatureMatrix*(productFeaturesArraybroadcast.value)
mappedUserRecommendationArray = []
#Extract ratings from the matrix
i=0
for i in range(0,len(userArray)):
ratingdict={}
j=0
for j in range(0,len(productArrayBroadcast.value)):
ratingdict[str(productArrayBroadcast.value[j])]=userRecommendationArray.item((i,j))
j=j+1
#Take the top 8 recommendations for the user
sort_apps=sorted(ratingdict.keys(), key=lambda x: x[1])[:8]
sort_apps='|'.join(sort_apps)
mappedUserRecommendationArray.append((userArray[i],sort_apps))
i=i+1
return [x for x in mappedUserRecommendationArray]
recommendations=model.userFeatures().repartition(2000).mapPartitions(func)
PySpark >= 1.6.0 提供 MatrixFactorizationModel.recommendProductsForUsers:
>> model.recommendProductsForUsers(3).take(2)
[(1,
(Rating(user=1, product=2975, rating=0.003626774788608227),
Rating(user=1, product=1322, rating=0.002494393082165332),
Rating(user=1, product=8746, rating=0.002176665942528324))),
(2,
(Rating(user=2, product=4060, rating=0.011020947406565042),
Rating(user=2, product=2332, rating=0.009479319983658458),
Rating(user=2, product=1979, rating=0.004587168057824856)))]