如何使用基于 csv 数据集的模型进行预测?
How to make a prediction using a model based on csv dataset?
按照教程,我做了一个神经网络,数据集来自我制作的csv文件。
这是一个简单的数据集,其中包含每个学生的第一次考试成绩、第二次考试成绩、第三次考试成绩和国籍。目标是使用第一次和第二次考试结果和国籍来预测第三次考试结果。
代码如下所示。
column_names = ['First exam result', 'Second exam result', 'Third exam result', 'Country']
dataset = pd.read_csv('data1.csv', names=column_names, sep=';')
dataset = dataset.dropna() # clean data
# convert categorical 'Country' data into one-hot data
dataset.Country=pd.Categorical(dataset.Country, ['PL', 'ENG'], ordered=True)
dataset.Country=dataset.Country.cat.codes
# split data
train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)
train_features = train_dataset.copy()
test_features = test_dataset.copy()
train_labels = train_features.pop('Third exam result')
test_labels = test_features.pop('Third exam result')
# Normalize
normalizer = preprocessing.Normalization()
normalizer.adapt(np.array(train_features))
loss = keras.losses.MeanAbsoluteError()
linear_model = tf.keras.Sequential([
normalizer,
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(units=1)])
linear_model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.1), loss=loss)
linear_model.fit(
train_features, train_labels,
epochs=500,
verbose=1,
# Calculate validation results on 20% of the training data
validation_split=0.2)
linear_model.evaluate(
test_features, test_labels, verbose=1)
现在我想使用 testdata.csv 文件进行预测,其中包含除第三次考试结果之外的所有信息,但我不知道该怎么做。
prediction_data = pd.read_csv('testdata.csv', names=column_names, sep=';')
您需要对测试数据集做同样的操作
prediction_data.dropna(inplace=True)
prediction_data.Country=pd.Categorical(prediction_data.Country, ['PL', 'ENG'], ordered=True)
prediction_data.Country=prediction_data.Country.cat.codes
normalizer.adapt(np.array(prediction_data)) #You need normalize test data too
predict = linear_model.predict(prediction_data)
按照教程,我做了一个神经网络,数据集来自我制作的csv文件。 这是一个简单的数据集,其中包含每个学生的第一次考试成绩、第二次考试成绩、第三次考试成绩和国籍。目标是使用第一次和第二次考试结果和国籍来预测第三次考试结果。 代码如下所示。
column_names = ['First exam result', 'Second exam result', 'Third exam result', 'Country']
dataset = pd.read_csv('data1.csv', names=column_names, sep=';')
dataset = dataset.dropna() # clean data
# convert categorical 'Country' data into one-hot data
dataset.Country=pd.Categorical(dataset.Country, ['PL', 'ENG'], ordered=True)
dataset.Country=dataset.Country.cat.codes
# split data
train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)
train_features = train_dataset.copy()
test_features = test_dataset.copy()
train_labels = train_features.pop('Third exam result')
test_labels = test_features.pop('Third exam result')
# Normalize
normalizer = preprocessing.Normalization()
normalizer.adapt(np.array(train_features))
loss = keras.losses.MeanAbsoluteError()
linear_model = tf.keras.Sequential([
normalizer,
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(units=1)])
linear_model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.1), loss=loss)
linear_model.fit(
train_features, train_labels,
epochs=500,
verbose=1,
# Calculate validation results on 20% of the training data
validation_split=0.2)
linear_model.evaluate(
test_features, test_labels, verbose=1)
现在我想使用 testdata.csv 文件进行预测,其中包含除第三次考试结果之外的所有信息,但我不知道该怎么做。
prediction_data = pd.read_csv('testdata.csv', names=column_names, sep=';')
您需要对测试数据集做同样的操作
prediction_data.dropna(inplace=True)
prediction_data.Country=pd.Categorical(prediction_data.Country, ['PL', 'ENG'], ordered=True)
prediction_data.Country=prediction_data.Country.cat.codes
normalizer.adapt(np.array(prediction_data)) #You need normalize test data too
predict = linear_model.predict(prediction_data)