如何使用 request.get 处理从网站收集的数据

How to manipulate data collected from a web site using request.get

我有以下 Python 代码:

import requests

sitedata = []
sitedatadownload = requests.get("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")
sitedata = sitedatadownload
sitedata[0]

当我 运行 代码时,出现以下错误:

Traceback (most recent call last):

  File "D:\Storage\Code\Python\request.py", line 9, in <module>
    sitedata[0]

TypeError: 'Response' object is not subscriptable

请问如何让数据进入我可以操作的状态?最初,我将数据导入 sitedata,但收到相同的错误,所以我认为如果我下载到 sitedatadownload 并将其移动到 sitedata 可能会起作用,但仍然不起作用.网上有很多关于 requests.get 的资源,但我找不到任何关于如何操作数据的信息(除了关于 JSON 的评论,但我没有使用它)。

这一行应该适用于获取内容 os 一个请求

import requests

sitedatadownload = requests.get("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")
sitedata = sitedatadownload.content

print(sitedata)
# b'5.1,3.5,1.4,0.2,Iris-setosa\n4.9,3.0,1.4,0.2,Iris-setosa\n4.7,3.2,1.3,0.2,Iris-setosa\n4.6,3.1,1.5,0.2,Iris-setosa\n5.0,3.6,1.4,0.2,Iris-setosa\n5.4,3.9,1.7,0.4,Iris-setosa\n4.6,3.4,1.4,0.3,Iris-setosa\n5.0,3.4,1.5,0.2,Iris-setosa\n4.4,2.9,1.4,0.2,Iris-setosa\n4.9,3.1,1.5,0.1,Iris-setosa\n5.4,3.7,1.5,0.2,Iris-setosa\n4.8,3.4,1.6,0.2,Iris-setosa\n4.8,3.0,1.4,0.1,Iris-setosa\n4.3,3.0,1.1,0.1,Iris-setosa\n5.8,4.0,1.2,0.2,Iris-setosa\n5.7,4.4,1.5,0.4,Iris-setosa\n5.4,3.9,1.3,0.4,Iris-setosa\n5.1,3.5,1.4,0.3,Iris-setosa\n5.7,3.8,1.7,0.3,Iris-setosa\n5.1,3.8,1.5,0.3,Iris-setosa\n5.4,3.4,1.7,0.2,Iris-setosa\n5.1,3.7,1.5,0.4,Iris-setosa\n4.6,3.6,1.0,0.2,Iris-setosa\n5.1,3.3,1.7,0.5,Iris-setosa\n4.8,3.4,1.9,0.2,Iris-setosa\n5.0,3.0,1.6,0.2,Iris-setosa\n5.0,3.4,1.6,0.4,Iris-setosa\n5.2,3.5,1.5,0.2,Iris-setosa\n5.2,3.4,1.4,0.2,Iris-setosa\n4.7,3.2,1.6,0.2,Iris-setosa\n4.8,3.1,1.6,0.2,Iris-setosa\n5.4,3.4,1.5,0.4,Iris-setosa\n5.2,4.1,1.5,0.1,Iris-setosa\n5.5,4.2,1.4,0.2,Iris-setosa\n4.9,3.1,1.5,0.1,Iris-setosa\n5.0,3.2,1.2,0.2,Iris-setosa\n5.5,3.5,1.3,0.2,Iris-setosa\n4.9,3.1,1.5,0.1,Iris-setosa\n4.4,3.0,1.3,0.2,Iris-setosa\n5.1,3.4,1.5,0.2,Iris-setosa\n5.0,3.5,1.3,0.3,Iris-setosa\n4.5,2.3,1.3,0.3,Iris-setosa\n4.4,3.2,1.3,0.2,Iris-setosa\n5.0,3.5,1.6,0.6,Iris-setosa\n5.1,3.8,1.9,0.4,Iris-setosa\n4.8,3.0,1.4,0.3,Iris-setosa\n5.1,3.8,1.6,0.2,Iris-setosa\n4.6,3.2,1.4,0.2,Iris-setosa\n5.3,3.7,1.5,0.2,Iris-setosa\n5.0,3.3,1.4,0.2,Iris-setosa\n7.0,3.2,4.7,1.4,Iris-versicolor\n6.4,3.2,4.5,1.5,Iris-versicolor\n6.9,3.1,4.9,1.5,Iris-versicolor\n5.5,2.3,4.0,1.3,Iris-versicolor\n6.5,2.8,4.6,1.5,Iris-versicolor\n5.7,2.8,4.5,1.3,Iris-versicolor\n6.3,3.3,4.7,1.6,Iris-versicolor\n4.9,2.4,3.3,1.0,Iris-versicolor\n6.6,2.9,4.6,1.3,Iris-versicolor\n5.2,2.7,3.9,1.4,Iris-versicolor\n5.0,2.0,3.5,1.0,Iris-versicolor\n5.9,3.0,4.2,1.5,Iris-versicolor\n6.0,2.2,4.0,1.0,Iris-versicolor\n6.1,2.9,4.7,1.4,Iris-versicolor\n5.6,2.9,3.6,1.3,Iris-versicolor\n6.7,3.1,4.4,1.4,Iris-versicolor\n5.6,3.0,4.5,1.5,Iris-versicolor\n5.8,2.7,4.1,1.0,Iris-versicolor\n6.2,2.2,4.5,1.5,Iris-versicolor\n5.6,2.5,3.9,1.1,Iris-versicolor\n5.9,3.2,4.8,1.8,Iris-versicolor\n6.1,2.8,4.0,1.3,Iris-versicolor\n6.3,2.5,4.9,1.5,Iris-versicolor\n6.1,2.8,4.7,1.2,Iris-versicolor\n6.4,2.9,4.3,1.3,Iris-versicolor\n6.6,3.0,4.4,1.4,Iris-versicolor\n6.8,2.8,4.8,1.4,Iris-versicolor\n6.7,3.0,5.0,1.7,Iris-versicolor\n6.0,2.9,4.5,1.5,Iris-versicolor\n5.7,2.6,3.5,1.0,Iris-versicolor\n5.5,2.4,3.8,1.1,Iris-versicolor\n5.5,2.4,3.7,1.0,Iris-versicolor\n5.8,2.7,3.9,1.2,Iris-versicolor\n6.0,2.7,5.1,1.6,Iris-versicolor\n5.4,3.0,4.5,1.5,Iris-versicolor\n6.0,3.4,4.5,1.6,Iris-versicolor\n6.7,3.1,4.7,1.5,Iris-versicolor\n6.3,2.3,4.4,1.3,Iris-versicolor\n5.6,3.0,4.1,1.3,Iris-versicolor\n5.5,2.5,4.0,1.3,Iris-versicolor\n5.5,2.6,4.4,1.2,Iris-versicolor\n6.1,3.0,4.6,1.4,Iris-versicolor\n5.8,2.6,4.0,1.2,Iris-versicolor\n5.0,2.3,3.3,1.0,Iris-versicolor\n5.6,2.7,4.2,1.3,Iris-versicolor\n5.7,3.0,4.2,1.2,Iris-versicolor\n5.7,2.9,4.2,1.3,Iris-versicolor\n6.2,2.9,4.3,1.3,Iris-versicolor\n5.1,2.5,3.0,1.1,Iris-versicolor\n5.7,2.8,4.1,1.3,Iris-versicolor\n6.3,3.3,6.0,2.5,Iris-virginica\n5.8,2.7,5.1,1.9,Iris-virginica\n7.1,3.0,5.9,2.1,Iris-virginica\n6.3,2.9,5.6,1.8,Iris-virginica\n6.5,3.0,5.8,2.2,Iris-virginica\n7.6,3.0,6.6,2.1,Iris-virginica\n4.9,2.5,4.5,1.7,Iris-virginica\n7.3,2.9,6.3,1.8,Iris-virginica\n6.7,2.5,5.8,1.8,Iris-virginica\n7.2,3.6,6.1,2.5,Iris-virginica\n6.5,3.2,5.1,2.0,Iris-virginica\n6.4,2.7,5.3,1.9,Iris-virginica\n6.8,3.0,5.5,2.1,Iris-virginica\n5.7,2.5,5.0,2.0,Iris-virginica\n5.8,2.8,5.1,2.4,Iris-virginica\n6.4,3.2,5.3,2.3,Iris-virginica\n6.5,3.0,5.5,1.8,Iris-virginica\n7.7,3.8,6.7,2.2,Iris-virginica\n7.7,2.6,6.9,2.3,Iris-virginica\n6.0,2.2,5.0,1.5,Iris-virginica\n6.9,3.2,5.7,2.3,Iris-virginica\n5.6,2.8,4.9,2.0,Iris-virginica\n7.7,2.8,6.7,2.0,Iris-virginica\n6.3,2.7,4.9,1.8,Iris-virginica\n6.7,3.3,5.7,2.1,Iris-virginica\n7.2,3.2,6.0,1.8,Iris-virginica\n6.2,2.8,4.8,1.8,Iris-virginica\n6.1,3.0,4.9,1.8,Iris-virginica\n6.4,2.8,5.6,2.1,Iris-virginica\n7.2,3.0,5.8,1.6,Iris-virginica\n7.4,2.8,6.1,1.9,Iris-virginica\n7.9,3.8,6.4,2.0,Iris-virginica\n6.4,2.8,5.6,2.2,Iris-virginica\n6.3,2.8,5.1,1.5,Iris-virginica\n6.1,2.6,5.6,1.4,Iris-virginica\n7.7,3.0,6.1,2.3,Iris-virginica\n6.3,3.4,5.6,2.4,Iris-virginica\n6.4,3.1,5.5,1.8,Iris-virginica\n6.0,3.0,4.8,1.8,Iris-virginica\n6.9,3.1,5.4,2.1,Iris-virginica\n6.7,3.1,5.6,2.4,Iris-virginica\n6.9,3.1,5.1,2.3,Iris-virginica\n5.8,2.7,5.1,1.9,Iris-virginica\n6.8,3.2,5.9,2.3,Iris-virginica\n6.7,3.3,5.7,2.5,Iris-virginica\n6.7,3.0,5.2,2.3,Iris-virginica\n6.3,2.5,5.0,1.9,Iris-virginica\n6.5,3.0,5.2,2.0,Iris-virginica\n6.2,3.4,5.4,2.3,Iris-virginica\n5.9,3.0,5.1,1.8,Iris-virginica\n\n'

关注documentation

如果您想将请求的数据存储在列表列表中,在您的情况下您可以这样做:

import requests

resp = requests.get("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")

data = [row.split(',') for row in resp.text.splitlines() if row != '']

print(data[0])
# ['5.1', '3.5', '1.4', '0.2', 'Iris-setosa']