如何通过sklearn计算两个字符串列表的余弦相似度?

How to calculate the cosine similarity of two string list by sklearn?

我有两个带有这样字符串的列表,

a_file = ['a', 'b', 'c']
b_file = ['b', 'x', 'y', 'z']

我想计算这两个列表的余弦相似度,我知道如何实现,

# count word occurrences
a_vals = Counter(a_file)
b_vals = Counter(b_file)

# convert to word-vectors
words  = list(a_vals.keys() | b_vals.keys())
a_vect = [a_vals.get(word, 0) for word in words]       
b_vect = [b_vals.get(word, 0) for word in words]        

# find cosine
len_a  = sum(av*av for av in a_vect) ** 0.5             
len_b  = sum(bv*bv for bv in b_vect) ** 0.5             
dot    = sum(av*bv for av,bv in zip(a_vect, b_vect))   
cosine = dot / (len_a * len_b) 

print(cosine)

但是,如果我想在sklearn中使用cosine_similarity,它显示问题:could not convert string to float: 'a'如何更正它?

from sklearn.metrics.pairwise import cosine_similarity

a_file = ['a', 'b', 'c']
b_file = ['b', 'x', 'y', 'z']
print(cosine_similarity(a_file, b_file))

好像需要

  • word-vectors,
  • 二维数据(列表有很多word-vectors)
print(cosine_similarity( [a_vect], [b_vect] ))

完整的工作代码:

from collections import Counter
from sklearn.metrics.pairwise import cosine_similarity

a_file = ['a', 'b', 'c']
b_file = ['b', 'x', 'y', 'z']

# count word occurrences
a_vals = Counter(a_file)
b_vals = Counter(b_file)

# convert to word-vectors
words  = list(a_vals.keys() | b_vals.keys())
a_vect = [a_vals.get(word, 0) for word in words]       
b_vect = [b_vals.get(word, 0) for word in words]        

# find cosine
len_a  = sum(av*av for av in a_vect) ** 0.5             
len_b  = sum(bv*bv for bv in b_vect) ** 0.5             
dot    = sum(av*bv for av,bv in zip(a_vect, b_vect))   
cosine = dot / (len_a * len_b) 

print(cosine)
print(cosine_similarity([a_vect], [b_vect]))

结果:

0.2886751345948129
[[0.28867513]]

编辑:

您也可以使用一个包含所有数据的列表(因此第二个参数将为 None
它将比较所有对 (a,a)(a,b)(b,a)(b,b).

print(cosine_similarity( [a_vect, b_vect] ))

结果:

[[1.         0.28867513]
 [0.28867513 1.        ]]

您可以使用更长的列表 [a,b,c, ...],它会检查所有可能的对。


文档:cosine_similarity