带有 TensorFlow GPU 的 Jupyter 内核

Jupyter kernel with TensorFlow GPU

无法将 GPU 识别为我的 Jupyter Notebook 内核的物理设备。

从命令行我有一个环境。像这样设置,看起来不错:

(base) > conda activate tf-gpu
(tf-gpu) > python
>>> import tensorflow as tf
>>> tf.config.list_physical_devices()
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), 
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

我在 Jupyter 中将内核更改为“tf-gpu”,但无法识别 GPU:

有什么建议吗?

Jupyter 控制台日志中的错误消息是:

tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found

tensorflow/core/common_runtime/gpu/gpu_device.cc:1850] Cannot dlopen some GPU libraries.

Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices

我最终将 cudnn64_8.dllC:\Program Files\NVIDIA\CUDNN\v8.3\bin 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin 并重新启动了 Jupyter。

我现在有这个:

感谢指点!