使用 R 将选定列的负值替换为 0 或 NA
Replace selected columns' negative values with 0s or NAs using R
对于示例数据 df
,我想用 0
和第三列 (x3
) 替换第一列 (x1
) 中的负值NA
通过函数 replace_negatives
如下:
df <- data.frame(x1 = -3:1,
x2 = -1,
x3 = -2:2)
df
输出:
x1 x2 x3
1 -3 -1 -2
2 -2 -1 -1
3 -1 -1 0
4 0 -1 1
5 1 -1 2
请注意,我没有按列名索引,因为实际数据中有很多列,列名不固定。
replace_negatives <- function(data){
df <<- data %>%
mutate(.[[1]] = if_else(.[[2]] < 0, 0, .[[1]])) %>%
mutate(.[[3]] = if_else(.[[3]] < 0, NA, .[[3]]))
return(df)
}
lapply(df, replace_negatives)
但它引发了一个错误:
> replace_negatives <- function(data){
+ df <<- data %>%
+ mutate(.[[1]] = if_else(.[[2]] < 0, 0, .[[1]])) %>%
Error: unexpected '=' in:
" df <<- data %>%
mutate(.[[1]] ="
> mutate(.[[3]] = if_else(.[[3]] < 0, NA, .[[3]]))
Error: unexpected '=' in " mutate(.[[3]] ="
> return(df)
Error: no function to return from, jumping to top level
> }
Error: unexpected '}' in "}"
如有任何帮助,我们将不胜感激。
预期输出:
x1 x2 x3
1 0 -1 NA
2 0 -1 NA
3 0 -1 0
4 0 -1 1
5 1 -1 2
要执行所需的操作,这里有一个基本的 R 方法:
df <- data.frame(x1 = -3:1,
x2 = -1,
x3 = -2:2)
df[[1]] <- ifelse(df[[1]] < 0, 0, df[[1]])
df[[3]] <- ifelse(df[[3]] < 0, NA, df[[3]])
df
#> x1 x2 x3
#> 1 0 -1 NA
#> 2 0 -1 NA
#> 3 0 -1 0
#> 4 0 -1 1
#> 5 1 -1 2
由 reprex package (v2.0.1)
于 2022-04-18 创建
您可以在函数中使用 across
:
library(tidyverse)
replace_negatives <- function(data){
df <- data %>%
mutate(across(1, ~ ifelse(. < 0, 0, .)),
across(3, ~ ifelse(. < 0, NA, .)))
return(df)
}
replace_negatives(df)
输出
x1 x2 x3
1 0 -1 NA
2 0 -1 NA
3 0 -1 0
4 0 -1 1
5 1 -1 2
这是你的函数的基础 R 版本:
replace_negatives <- function(df){
is.na(df[,1]) <- df[,1] < 0
index <- df[,3] < 0
df[,3][index] <- 0
return(df)
}
replace_negatives(df)
x1 x2 x3
1 NA -1 0
2 NA -1 0
3 NA -1 0
4 0 -1 1
5 1 -1 2
对于示例数据 df
,我想用 0
和第三列 (x3
) 替换第一列 (x1
) 中的负值NA
通过函数 replace_negatives
如下:
df <- data.frame(x1 = -3:1,
x2 = -1,
x3 = -2:2)
df
输出:
x1 x2 x3
1 -3 -1 -2
2 -2 -1 -1
3 -1 -1 0
4 0 -1 1
5 1 -1 2
请注意,我没有按列名索引,因为实际数据中有很多列,列名不固定。
replace_negatives <- function(data){
df <<- data %>%
mutate(.[[1]] = if_else(.[[2]] < 0, 0, .[[1]])) %>%
mutate(.[[3]] = if_else(.[[3]] < 0, NA, .[[3]]))
return(df)
}
lapply(df, replace_negatives)
但它引发了一个错误:
> replace_negatives <- function(data){
+ df <<- data %>%
+ mutate(.[[1]] = if_else(.[[2]] < 0, 0, .[[1]])) %>%
Error: unexpected '=' in:
" df <<- data %>%
mutate(.[[1]] ="
> mutate(.[[3]] = if_else(.[[3]] < 0, NA, .[[3]]))
Error: unexpected '=' in " mutate(.[[3]] ="
> return(df)
Error: no function to return from, jumping to top level
> }
Error: unexpected '}' in "}"
如有任何帮助,我们将不胜感激。
预期输出:
x1 x2 x3
1 0 -1 NA
2 0 -1 NA
3 0 -1 0
4 0 -1 1
5 1 -1 2
要执行所需的操作,这里有一个基本的 R 方法:
df <- data.frame(x1 = -3:1,
x2 = -1,
x3 = -2:2)
df[[1]] <- ifelse(df[[1]] < 0, 0, df[[1]])
df[[3]] <- ifelse(df[[3]] < 0, NA, df[[3]])
df
#> x1 x2 x3
#> 1 0 -1 NA
#> 2 0 -1 NA
#> 3 0 -1 0
#> 4 0 -1 1
#> 5 1 -1 2
由 reprex package (v2.0.1)
于 2022-04-18 创建您可以在函数中使用 across
:
library(tidyverse)
replace_negatives <- function(data){
df <- data %>%
mutate(across(1, ~ ifelse(. < 0, 0, .)),
across(3, ~ ifelse(. < 0, NA, .)))
return(df)
}
replace_negatives(df)
输出
x1 x2 x3
1 0 -1 NA
2 0 -1 NA
3 0 -1 0
4 0 -1 1
5 1 -1 2
这是你的函数的基础 R 版本:
replace_negatives <- function(df){
is.na(df[,1]) <- df[,1] < 0
index <- df[,3] < 0
df[,3][index] <- 0
return(df)
}
replace_negatives(df)
x1 x2 x3
1 NA -1 0
2 NA -1 0
3 NA -1 0
4 0 -1 1
5 1 -1 2