Python 在数据框中每周递增日期
Python to increment date every week in a dataframe
我正在努力满足这个要求,我需要以周为单位增加日期,下面是相同的代码:
import pandas as pd
import numpy as np
c=15
s={'week':[1,2,3,4,5,6,7,8],'Sales':[10,20,30,40,50,60,70,80]}
p=pd.DataFrame(data=s)
p['week'] =p['week'].apply(
lambda x: datetime.datetime.strptime(f'2021-{x:02}-1', '%Y-%U-%u')
)
O/P-
我怎样才能从周列的最后一行递增到接下来的 15 周?
基本上,一周的期望输出从 2022-03-01
开始到接下来的 14 周。
一种选择是使用 date_range
生成额外的日期,然后使用 set_index
+ reindex
附加它们:
p = p.set_index('week').reindex(pd.date_range('2021-01-04', periods=8+14, freq='W-MON')).rename_axis(['week']).reset_index()
输出:
week Sales
0 2021-01-04 10.0
1 2021-01-11 20.0
2 2021-01-18 30.0
3 2021-01-25 40.0
4 2021-02-01 50.0
5 2021-02-08 60.0
6 2021-02-15 70.0
7 2021-02-22 80.0
8 2021-03-01 NaN
9 2021-03-08 NaN
10 2021-03-15 NaN
11 2021-03-22 NaN
12 2021-03-29 NaN
13 2021-04-05 NaN
14 2021-04-12 NaN
15 2021-04-19 NaN
16 2021-04-26 NaN
17 2021-05-03 NaN
18 2021-05-10 NaN
19 2021-05-17 NaN
20 2021-05-24 NaN
21 2021-05-31 NaN
您可以使用 range()
函数和您的变量 c
修改 week
列表的长度,但您还将检查 sales
的长度,这必须具有相同数量的元素:
import pandas as pd
import numpy as np
import datetime
c=15
weeks = list(range(1, c+1))
sales = [10,20,30,40,50,60,70,80]
s={'week':weeks,'Sales':sales+[None]*(len(weeks)-len(sales) if (len(weeks)-len(sales)) >=0 else 0)}
p=pd.DataFrame(data=s)
p['week'] =p['week'].apply(
lambda x: datetime.datetime.strptime(f'2021-{x:02}-1', '%Y-%U-%u')
)
print(p)
DateOffset
中的另一个选项:
p = pd.concat([p, pd.DataFrame({'week': [p.iloc[-1,0]+pd.DateOffset(weeks=i) for i in range(1,c)]})], ignore_index=True)
>>> p
'''
week Sales
0 2021-01-04 10.0
1 2021-01-11 20.0
2 2021-01-18 30.0
3 2021-01-25 40.0
4 2021-02-01 50.0
5 2021-02-08 60.0
6 2021-02-15 70.0
7 2021-02-22 80.0
8 2021-03-01 NaN
9 2021-03-08 NaN
10 2021-03-15 NaN
11 2021-03-22 NaN
12 2021-03-29 NaN
13 2021-04-05 NaN
14 2021-04-12 NaN
15 2021-04-19 NaN
16 2021-04-26 NaN
17 2021-05-03 NaN
18 2021-05-10 NaN
19 2021-05-17 NaN
20 2021-05-24 NaN
21 2021-05-31 NaN
我正在努力满足这个要求,我需要以周为单位增加日期,下面是相同的代码:
import pandas as pd
import numpy as np
c=15
s={'week':[1,2,3,4,5,6,7,8],'Sales':[10,20,30,40,50,60,70,80]}
p=pd.DataFrame(data=s)
p['week'] =p['week'].apply(
lambda x: datetime.datetime.strptime(f'2021-{x:02}-1', '%Y-%U-%u')
)
O/P-
我怎样才能从周列的最后一行递增到接下来的 15 周?
基本上,一周的期望输出从 2022-03-01
开始到接下来的 14 周。
一种选择是使用 date_range
生成额外的日期,然后使用 set_index
+ reindex
附加它们:
p = p.set_index('week').reindex(pd.date_range('2021-01-04', periods=8+14, freq='W-MON')).rename_axis(['week']).reset_index()
输出:
week Sales
0 2021-01-04 10.0
1 2021-01-11 20.0
2 2021-01-18 30.0
3 2021-01-25 40.0
4 2021-02-01 50.0
5 2021-02-08 60.0
6 2021-02-15 70.0
7 2021-02-22 80.0
8 2021-03-01 NaN
9 2021-03-08 NaN
10 2021-03-15 NaN
11 2021-03-22 NaN
12 2021-03-29 NaN
13 2021-04-05 NaN
14 2021-04-12 NaN
15 2021-04-19 NaN
16 2021-04-26 NaN
17 2021-05-03 NaN
18 2021-05-10 NaN
19 2021-05-17 NaN
20 2021-05-24 NaN
21 2021-05-31 NaN
您可以使用 range()
函数和您的变量 c
修改 week
列表的长度,但您还将检查 sales
的长度,这必须具有相同数量的元素:
import pandas as pd
import numpy as np
import datetime
c=15
weeks = list(range(1, c+1))
sales = [10,20,30,40,50,60,70,80]
s={'week':weeks,'Sales':sales+[None]*(len(weeks)-len(sales) if (len(weeks)-len(sales)) >=0 else 0)}
p=pd.DataFrame(data=s)
p['week'] =p['week'].apply(
lambda x: datetime.datetime.strptime(f'2021-{x:02}-1', '%Y-%U-%u')
)
print(p)
DateOffset
中的另一个选项:
p = pd.concat([p, pd.DataFrame({'week': [p.iloc[-1,0]+pd.DateOffset(weeks=i) for i in range(1,c)]})], ignore_index=True)
>>> p
'''
week Sales
0 2021-01-04 10.0
1 2021-01-11 20.0
2 2021-01-18 30.0
3 2021-01-25 40.0
4 2021-02-01 50.0
5 2021-02-08 60.0
6 2021-02-15 70.0
7 2021-02-22 80.0
8 2021-03-01 NaN
9 2021-03-08 NaN
10 2021-03-15 NaN
11 2021-03-22 NaN
12 2021-03-29 NaN
13 2021-04-05 NaN
14 2021-04-12 NaN
15 2021-04-19 NaN
16 2021-04-26 NaN
17 2021-05-03 NaN
18 2021-05-10 NaN
19 2021-05-17 NaN
20 2021-05-24 NaN
21 2021-05-31 NaN