将组中的单个值传播到组中的所有其他 NaN 值
Spread single value in group across all other NaN values in group
在此示例中,我们尝试将组和列中的值应用于同一组和列中的所有其他 NaN。
import pandas as pd
df = pd.DataFrame({'id':[1,1,2,2,3,4,5], 'Year':[2000,2000, 2001, 2001, 2000, 2000, 2000], 'Values': [1, 3, 2, 3, 4, 5,6]})
df['pct'] = df.groupby(['id', 'Year'])['Values'].apply(lambda x: x/x.shift() - 1)
print(df)
id Year Values pct
0 1 2000 1 NaN
1 1 2000 3 2.0
2 2 2001 2 NaN
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN
我尝试使用 .ffill() 来填充每个包含值的组中的 NaN。例如,代码试图使与索引 0 关联的 NaN 为 2.0,与索引 2 关联的 NaN 为 0.5。
df['pct'] = df.groupby(['id', 'Year'])['pct'].ffill()
print(df)
id Year Values pct
0 1 2000 1 NaN
1 1 2000 3 2.0
2 2 2001 2 NaN
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN
应该是bfill
df['pct'] = df.groupby(['id', 'Year'])['pct'].bfill()
df
Out[109]:
id Year Values pct
0 1 2000 1 2.0
1 1 2000 3 2.0
2 2 2001 2 0.5
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN
在此示例中,我们尝试将组和列中的值应用于同一组和列中的所有其他 NaN。
import pandas as pd
df = pd.DataFrame({'id':[1,1,2,2,3,4,5], 'Year':[2000,2000, 2001, 2001, 2000, 2000, 2000], 'Values': [1, 3, 2, 3, 4, 5,6]})
df['pct'] = df.groupby(['id', 'Year'])['Values'].apply(lambda x: x/x.shift() - 1)
print(df)
id Year Values pct
0 1 2000 1 NaN
1 1 2000 3 2.0
2 2 2001 2 NaN
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN
我尝试使用 .ffill() 来填充每个包含值的组中的 NaN。例如,代码试图使与索引 0 关联的 NaN 为 2.0,与索引 2 关联的 NaN 为 0.5。
df['pct'] = df.groupby(['id', 'Year'])['pct'].ffill()
print(df)
id Year Values pct
0 1 2000 1 NaN
1 1 2000 3 2.0
2 2 2001 2 NaN
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN
应该是bfill
df['pct'] = df.groupby(['id', 'Year'])['pct'].bfill()
df
Out[109]:
id Year Values pct
0 1 2000 1 2.0
1 1 2000 3 2.0
2 2 2001 2 0.5
3 2 2001 3 0.5
4 3 2000 4 NaN
5 4 2000 5 NaN
6 5 2000 6 NaN