合并多个列名重复的数据表

Merge multiple data tables with duplicate column names

我正在尝试合并(加入)多个数据 tables(通过 fread 从 5 个 csv 文件中获得)以形成单个数据 table。当我尝试合并 5 个数据 tables 时出现错误,但当我仅合并 4 个数据时工作正常。MWE 下面:

# example data
DT1 <- data.table(x = letters[1:6], y = 10:15)
DT2 <- data.table(x = letters[1:6], y = 11:16)
DT3 <- data.table(x = letters[1:6], y = 12:17)
DT4 <- data.table(x = letters[1:6], y = 13:18)
DT5 <- data.table(x = letters[1:6], y = 14:19)

# this gives an error
Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5))

Error in merge.data.table(..., all = TRUE, by = "x") : x has some duplicated column name(s): y.x,y.y. Please remove or rename the duplicate(s) and try again.

# whereas this works fine
Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4))

    x y.x y.y y.x y.y 
 1: a  10  11  12  13 
 2: b  11  12  13  14 
 3: c  12  13  14  15 
 4: d  13  14  15  16 
 5: e  14  15  16  17 
 6: f  15  16  17  18

我有一个解决方法,如果我更改 DT1 的第二列名称:

setnames(DT1, "y", "new_y")

# this works now
Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5))

为什么会发生这种情况,有什么方法可以在不更改任何列名的情况下将任意数量的数据 table 与相同的列名合并?

如果只是这 5 个数据表(其中 x 对所有数据表都相同),您还可以使用嵌套连接:

# set the key for each datatable to 'x'
setkey(DT1,x)
setkey(DT2,x)
setkey(DT3,x)
setkey(DT4,x)
setkey(DT5,x)

# the nested join
mergedDT1 <- DT1[DT2[DT3[DT4[DT5]]]]

或者正如@Frank 在评论中所说:

DTlist <- list(DT1,DT2,DT3,DT4,DT5)
Reduce(function(X,Y) X[Y], DTlist)

给出:

   x y1 y2 y3 y4 y5
1: a 10 11 12 13 14
2: b 11 12 13 14 15
3: c 12 13 14 15 16
4: d 13 14 15 16 17
5: e 14 15 16 17 18
6: f 15 16 17 18 19

这与以下结果相同:

mergedDT2 <- Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5))

> identical(mergedDT1,mergedDT2)
[1] TRUE

当您的 x 列没有相同的值时,嵌套连接不会提供所需的解决方案:

DT1[DT2[DT3[DT4[DT5[DT6]]]]]

这给出:

   x y1 y2 y3 y4 y5 y6
1: b 11 12 13 14 15 15
2: c 12 13 14 15 16 16
3: d 13 14 15 16 17 17
4: e 14 15 16 17 18 18
5: f 15 16 17 18 19 19
6: g NA NA NA NA NA 20

同时:

Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5, DT6))

给出:

   x y1 y2 y3 y4 y5 y6
1: a 10 11 12 13 14 NA
2: b 11 12 13 14 15 15
3: c 12 13 14 15 16 16
4: d 13 14 15 16 17 17
5: e 14 15 16 17 18 18
6: f 15 16 17 18 19 19
7: g NA NA NA NA NA 20

使用数据:

为了使带有 Reduce 的代码正常工作,我更改了 y 列的名称。

DT1 <- data.table(x = letters[1:6], y1 = 10:15)
DT2 <- data.table(x = letters[1:6], y2 = 11:16)
DT3 <- data.table(x = letters[1:6], y3 = 12:17)
DT4 <- data.table(x = letters[1:6], y4 = 13:18)
DT5 <- data.table(x = letters[1:6], y5 = 14:19)

DT6 <- data.table(x = letters[2:7], y6 = 15:20, key="x")

使用整形可以让您更灵活地命名列。

library(dplyr)
library(tidyr)

list(DT1, DT2, DT3, DT4, DT5) %>%
  bind_rows(.id = "source") %>%
  mutate(source = paste("y", source, sep = ".")) %>%
  spread(source, y)

或者,这行得通

library(dplyr)
library(tidyr)

list(DT1 = DT1, DT2 = DT2, DT3 = DT3, DT4 = DT4, DT5 = DT5) %>%
  bind_rows(.id = "source") %>%
  mutate(source = paste(source, "y", sep = ".")) %>%
  spread(source, y)

堆叠和重塑 我不认为这与 merge 函数完全对应,但是...

mycols <- "x"
DTlist <- list(DT1,DT2,DT3,DT4,DT5)

dcast(rbindlist(DTlist,idcol=TRUE), paste0(paste0(mycols,collapse="+"),"~.id"))

#    x  1  2  3  4  5
# 1: a 10 11 12 13 14
# 2: b 11 12 13 14 15
# 3: c 12 13 14 15 16
# 4: d 13 14 15 16 17
# 5: e 14 15 16 17 18
# 6: f 15 16 17 18 19

我不知道这是否会扩展到比 y 更多的列。

合并分配

DT <- Reduce(function(...) merge(..., all = TRUE, by = mycols), 
  lapply(DTlist,`[.noquote`,mycols))

for (k in seq_along(DTlist)){
  js = setdiff( names(DTlist[[k]]), mycols )
  DT[DTlist[[k]], paste0(js,".",k) := mget(paste0("i.",js)), on=mycols, by=.EACHI]
}

#    x y.1 y.2 y.3 y.4 y.5
# 1: a  10  11  12  13  14
# 2: b  11  12  13  14  15
# 3: c  12  13  14  15  16
# 4: d  13  14  15  16  17
# 5: e  14  15  16  17  18
# 6: f  15  16  17  18  19

(我不确定这是否完全扩展到其他情况。很难说,因为 OP 的示例确实不需要 merge 的全部功能。在 OP 的情况下,mycols="x"x 在所有 DT* 中都是相同的,显然合并是不合适的,正如@eddi 所提到的。不过,一般问题很有趣,所以这就是我在这里试图攻击的问题。 )

如果您想在合并期间重命名,这里有一种将计数器保留在 Reduce 内的方法:

Reduce((function() {counter = 0
                    function(x, y) {
                      counter <<- counter + 1
                      d = merge(x, y, all = T, by = 'x')
                      setnames(d, c(head(names(d), -1), paste0('y.', counter)))
                    }})(), list(DT1, DT2, DT3, DT4, DT5))
#   x y.x y.1 y.2 y.3 y.4
#1: a  10  11  12  13  14
#2: b  11  12  13  14  15
#3: c  12  13  14  15  16
#4: d  13  14  15  16  17
#5: e  14  15  16  17  18
#6: f  15  16  17  18  19

或者,您可以 setNames 之前的列并像这样 merge

dts = list(DT1, DT2, DT3, DT4, DT5)
names(dts) = paste('DT', c(1:5), sep = '')    

dtlist = lapply(names(dts),function(i) 
         setNames(dts[[i]], c('x', paste('y',i,sep = '.'))))

Reduce(function(...) merge(..., all = T), dtlist)

#   x y.DT1 y.DT2 y.DT3 y.DT4 y.DT5
#1: a    10    11    12    13    14
#2: b    11    12    13    14    15
#3: c    12    13    14    15    16
#4: d    13    14    15    16    17
#5: e    14    15    16    17    18
#6: f    15    16    17    18    19

另一种方法:

dts <- list(DT1, DT2, DT3, DT4, DT5)

names(dts) <- paste("y", seq_along(dts), sep="")
data.table::dcast(rbindlist(dts, idcol="id"), x ~ id, value.var = "y")

#   x y1 y2 y3 y4 y5
#1: a 10 11 12 13 14
#2: b 11 12 13 14 15
#3: c 12 13 14 15 16
#4: d 13 14 15 16 17
#5: e 14 15 16 17 18
#6: f 15 16 17 18 19

添加 "data.table::dcast" 中的包名称以确保调用 returns 数据 table 而不是数据帧,即使 "reshape2" 包加载为出色地。在不明确提及包名称的情况下,可能会使用来自 reshape2 包的 dcast 函数,它适用于 data.frame 和 returns a data.frame 而不是 data.table.