data.table 后端的 dplyr 错误 [在 dplyr 0.4.3 或更早版本中]

dplyr bug with data.table backend [in dplyr 0.4.3 or earlier]

当我浏览答案时 , I found data.frame 的预期完全一致。

library(dplyr) # dplyr_0.4.3  
library(data.table) # data.table_1.9.5 
df <- structure(list(id = c(1L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 3L), 
                     a = c("AA", 
                           "AB", "AA", "AB", "AB", "AB", "AB", "AA", "AA"), b = c(2L, 5L, 
                                                                                  1L, 2L, 4L, 4L, 3L, 1L, 4L)), .Names = c("id", "a", "b"),
                class = "data.frame", row.names = c(NA, -9L))


df %>%
  group_by(id) %>%
  mutate(relevance=+(a!='AA')) %>%
  mutate(mean=cumsum(relevance * b) / cumsum(relevance))

 Source: local data frame [9 x 5]
Groups: id [3]

     id     a     b relevance  mean
  (int) (chr) (int)     (int) (dbl)
1     1    AA     2         0   NaN
2     1    AB     5         1   5.0
3     1    AA     1         0   5.0
4     2    AB     2         1   2.0
5     2    AB     4         1   3.0
6     3    AB     4         1   4.0
7     3    AB     3         1   3.5
8     3    AA     1         0   3.5
9     3    AA     4         0   3.5

然而当 运行 与 data.table 时,结果超出了我的理解范围。

setDT(df) %>%
  group_by(id) %>%
  mutate(relevance=+(a!='AA')) %>%
  mutate(mean=cumsum(relevance * b) / cumsum(relevance))

Source: local data table [9 x 5]

     id     a     b relevance     mean
  (int) (chr) (int)     (int)    (dbl)
1     1    AA     2         0      NaN
2     1    AB     5         1 5.000000
3     1    AA     1         0 5.000000
4     2    AB     2         1 3.500000
5     2    AB     4         1 3.666667
6     3    AB     4         1 3.750000
7     3    AB     3         1 3.600000
8     3    AA     1         0 3.600000
9     3    AA     4         0 3.600000

这是预期的行为吗?如果是这样,是否有关于何时不使用 data.table 后端和 dplyr 的指南?

在 data.table was resolved in 0.5.0mutate 之后导致分组被删除的错误。