使用嵌套的用户数据类型保存 Spark DataFrame

Saving Spark DataFrames with nested User Data Types

我想保存(作为 parquet 文件)包含自定义 class 作为列的 Spark DataFrame。这个class是由另一个习惯class的一个Seq组成的。为此,我以与 VectorUDT 类似的方式为每个 class 创建了一个 UserDefinedType class。我可以按预期使用数据框,但无法将其作为镶木地板(或杰森)保存到磁盘 我将其报告为错误,但可能是我的代码有问题。我已经实现了一个更简单的示例来说明问题:

import org.apache.spark.sql.SaveMode
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.GenericMutableRow
import org.apache.spark.sql.types._

@SQLUserDefinedType(udt = classOf[AUDT])
case class A(list:Seq[B])

class AUDT extends UserDefinedType[A] {
  override def sqlType: DataType = StructType(Seq(StructField("list", ArrayType(BUDT, containsNull = false), nullable = true)))
  override def userClass: Class[A] = classOf[A]
  override def serialize(obj: Any): Any = obj match {
    case A(list) =>
      val row = new GenericMutableRow(1)
      row.update(0, new GenericArrayData(list.map(_.asInstanceOf[Any]).toArray))
      row
  }

  override def deserialize(datum: Any): A = {
    datum match {
      case row: InternalRow => new A(row.getArray(0).toArray(BUDT).toSeq)
    }
  }
}

object AUDT extends AUDT

@SQLUserDefinedType(udt = classOf[BUDT])
case class B(num:Int)

class BUDT extends UserDefinedType[B] {
  override def sqlType: DataType = StructType(Seq(StructField("num", IntegerType, nullable = false)))
  override def userClass: Class[B] = classOf[B]
  override def serialize(obj: Any): Any = obj match {
    case B(num) =>
      val row = new GenericMutableRow(1)
      row.setInt(0, num)
      row
  }

  override def deserialize(datum: Any): B = {
    datum match {
      case row: InternalRow => new B(row.getInt(0))
    }
  }
}

object BUDT extends BUDT

object TestNested {
  def main(args:Array[String]) = {
    val col = Seq(new A(Seq(new B(1), new B(2))),
                  new A(Seq(new B(3), new B(4))))

    val sc = new SparkContext(new SparkConf().setMaster("local[1]").setAppName("TestSpark"))
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._

    val df = sc.parallelize(1 to 2 zip col).toDF()
    df.show()

    df.write.mode(SaveMode.Overwrite).save(...)
  }
}

这会导致以下错误:

15/09/16 16:44:39 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 1) java.lang.IllegalArgumentException: Nested type should be repeated: required group array { required int32 num; } at org.apache.parquet.schema.ConversionPatterns.listWrapper(ConversionPatterns.java:42) at org.apache.parquet.schema.ConversionPatterns.listType(ConversionPatterns.java:97) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:460) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField.apply(CatalystSchemaConverter.scala:522) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField.apply(CatalystSchemaConverter.scala:521) at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51) at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60) at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:108) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:521) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:526) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert.apply(CatalystSchemaConverter.scala:311) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert.apply(CatalystSchemaConverter.scala:311) at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at org.apache.spark.sql.types.StructType.foreach(StructType.scala:92) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at org.apache.spark.sql.types.StructType.map(StructType.scala:92) at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convert(CatalystSchemaConverter.scala:311) at org.apache.spark.sql.execution.datasources.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypesConverter.scala:58) at org.apache.spark.sql.execution.datasources.parquet.RowWriteSupport.init(ParquetTableSupport.scala:55) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:288) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:262) at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.(ParquetRelation.scala:94) at org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anon.newInstance(ParquetRelation.scala:272) at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:234) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$$anonfun$apply$mcV$sp.apply(InsertIntoHadoopFsRelation.scala:150) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$$anonfun$apply$mcV$sp.apply(InsertIntoHadoopFsRelation.scala:150) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 15/09/16 16:44:39 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 1, localhost):

如果使用 B 而不是 A 保存数据帧,则不存在任何问题,因为 B 没有嵌套自定义 class。我错过了什么吗?

我必须对您的代码进行四处更改才能使其正常工作(在 Linux 上的 Spark 1.6.0 中进行测试),我想我可以主要 解释原因他们是需要的。然而,我确实想知道是否有更简单的解决方案。全部变化都在AUDT,如下:

  1. 定义sqlType时,使其依赖于BUDT.sqlType,而不仅仅是BUDT
  2. serialize() 中,对每个列表元素调用 BUDT.serialize()
  3. deserialize()中:
    • 调用 toArray(BUDT.sqlType) 而不是 toArray(BUDT)
    • 对每个元素调用 BUDT.deserialize()

这是生成的代码:

class AUDT extends UserDefinedType[A] {
  override def sqlType: DataType =
    StructType(
      Seq(StructField("list",
                      ArrayType(BUDT.sqlType, containsNull = false),
                      nullable = true)))

  override def userClass: Class[A] = classOf[A]

  override def serialize(obj: Any): Any = 
    obj match {
      case A(list) =>
        val row = new GenericMutableRow(1)
        val elements =
          list.map(_.asInstanceOf[Any])
              .map(e => BUDT.serialize(e))
              .toArray
        row.update(0, new GenericArrayData(elements))
        row
    }

  override def deserialize(datum: Any): A = {
    datum match {
      case row: InternalRow => 
        val first = row.getArray(0)
        val bs:Array[InternalRow] = first.toArray(BUDT.sqlType)
        val bseq = bs.toSeq.map(e => BUDT.deserialize(e))
        val a = new A(bseq)
        a
    }
  }

}

所有四个更改具有相同的特征:A 的处理和 B 的处理之间的关系现在非常明确:模式类型、序列化和反序列化。原始代码似乎是基于 Spark SQL 将 "just figure it out" 的假设,这可能是合理的,但显然不是。