SparkStreaming:fileStream() 中的错误

SparkStreaming: error in fileStream()

我正在尝试在 Scala 中实现 Spark Streaming 应用程序。我想使用 fileStream() 方法来处理新到达的文件以及 hadoop 目录中存在的旧文件。

我从 Whosebug 的两个线程中跟踪了 fileStream() 的实现:

我正在使用 fileStream() 如下:

val linesRDD = ssc.fileStream[LongWritable, Text, TextInputFormat](inputDirectory, (t: org.apache.hadoop.fs.Path) => true, false).map(_._2.toString)

但我收到如下错误信息:

type arguments [org.apache.hadoop.io.LongWritable,org.apache.hadoop.io.Text,
org.apache.hadoop.mapred.TextInputFormat] conform to the bounds of none of the overloaded alternatives of value fileStream: [K, V, F <: org.apache.hadoop.mapreduce.InputFormat[K,V]](directory: String, filter: org.apache.hadoop.fs.Path ⇒ Boolean, newFilesOnly: Boolean, conf: org.apache.hadoop.conf.Configuration)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)] <and> 
[K, V, F <: org.apache.hadoop.mapreduce.InputFormat[K,V]](directory:
String, filter: org.apache.hadoop.fs.Path ⇒ Boolean, newFilesOnly: Boolean)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], 
implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)] <and> [K, V, F <: org.apache.hadoop.mapreduce.InputFormat[K,V]](directory: String)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)]

wrong number of type parameters for overloaded method value fileStream with alternatives: 
[K, V, F <: org.apache.hadoop.mapreduce.InputFormat[K,V]](directory: String, filter: org.apache.hadoop.fs.Path ⇒ Boolean, newFilesOnly: Boolean, conf: org.apache.hadoop.conf.Configuration)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)] <and> [K, V, F <:     org.apache.hadoop.mapreduce.InputFormat[K,V]](directory: String, filter: org.apache.hadoop.fs.Path ⇒ Boolean, newFilesOnly: Boolean)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)] <and> 
[K, V, F <: org.apache.hadoop.mapreduce.InputFormat[K,V]](directory: String)(implicit evidence: scala.reflect.ClassTag[K], implicit evidence: scala.reflect.ClassTag[V], implicit evidence: scala.reflect.ClassTag[F])
org.apache.spark.streaming.dstream.InputDStream[(K, V)] 

我正在使用 spark 1.4.1hadoop 2.7.1。在发布这个问题之前,我已经查看了通过 Whosebug 和 spark 文档讨论的不同实现,但没有任何帮助。任何帮助将不胜感激。

谢谢 罗杰尼什

请在下面找到示例 java 代码,导入正确,对我来说工作正常

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

JavaStreamingContext jssc = SparkUtils.getStreamingContext("key", jsc);
//      JavaDStream<String> rawInput = jssc.textFileStream(inputPath);

        JavaPairInputDStream<LongWritable, Text> inputStream = jssc.fileStream(
                inputPath, LongWritable.class, Text.class,
                TextInputFormat.class, new Function<Path, Boolean>() {
                    @Override
                    public Boolean call(Path v1) throws Exception {
                        if ( v1.getName().contains("COPYING") ) {
                            // This eliminates staging files.
                            return Boolean.FALSE;
                        }
                        return Boolean.TRUE;
                    }
                }, true);
        JavaDStream<String> rawInput = inputStream.map(
                  new Function<Tuple2<LongWritable, Text>, String>() {
                    @Override
                    public String call(Tuple2<LongWritable, Text> v1) throws Exception {
                      return v1._2().toString();
                    }
                });
        log.info(tracePrefix + "Created the stream, Window Interval: " + windowInterval + ", Slide interval: " + slideInterval);
        rawInput.print();