如何在我的子集数据矩阵上计算 T 检验和 F 检验?

How to calculate a T-test and F-test on my subset data matrix?

我是 R 的新手,如果我犯了任何失误或错误,我深表歉意。

下面是我使用的代码,我的数据集示例,以及我的输出结果,总共 503 行 x 7 列。从这个子集数据矩阵中,我想知道如何确定血清素和非血清素之间的变异系数 (CV) 是否存在显着差异,分别列为 "Y" 和 "N"?

最后我想测试一下纬度和"Y"和"N"的CV是否有相关性,判断两者是否有显着差异。如果有人可以帮助初出茅庐的 R 用户,我将不胜感激!

#Example Data#
    SPP SEROTINOUS  LATITUDE    LONGITUDE   Y00 Y01 Y02 Y03 Y04 Y05 Y06 Y07 Y08 Y09 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 Y33 Y34 Y35 Y36 Y37 Y38 Y39 Y40 Y41 Y42 Y43 Y44 Y45 Y46 Y47 Y48 Y49 Y50 Y51 Y52 Y53 Y54 Y55 Y56 Y57 Y58 Y59 Y60 Y61 Y62 Y63 Y64 Y65 Y66 Y67 Y68 Y69 Y70 Y71 Y72 Y73 Y74 Y75 Y76 Y77 Y78 Y79 Y80 Y81 Y82 Y83 Y84 Y85 Y86 Y87 Y88 Y89 Y90 Y91 Y92 Y93
1   ABIES           N   53.00   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    4.2 0.0 1.1 0.0 0.0 1.1 0.0 3.3 0.0 3.3 0.0 1.0 2.3 1.0 1.0 0.0 3.0 0.0 0.0 1.0 3.3 0.0 0.0 3.6 4.3 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
2   ABIES AMABILIS  N   48.40   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    15.0    10.0    0.0 0.0 4.0 0.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
3   ABIES AMABILIS  N   48.40   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    0.0 0.0 31.0    0.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
4   ABIES AMABILIS  N   48.00   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    0.0 0.0 24.0    0.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
5   ABIES AMABILIS  N   47.00   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    10.0    0.0 0.0 2.0 1.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
6   ABIES AMABILIS  N   46.00   121.40  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    15.0    0.0 2.0 3.0 1.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
7   ABIES AMABILIS  N   46.20   122.10  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    0.0 0.0 89.0    0.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
8   ABIES AMABILIS  N   45.40   122.00  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    20.0    0.0 1.0 6.0 0.0 0.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
9   ABIES AMABILIS  N   45.20   121.40  -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    52.0    0.0 2.0 58.0    0.0 4.0 -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0

#Expanded Code#
CapstoneData<-read.csv("/Users/Michael/Documents/School/Capstone/CapstoneData.csv",stringsAsFactor=F)
str(CapstoneData)
raw = list() # Create an empty list
names = list() # Create an empty list
L = list() # Create an empty list
output<-matrix(nrow=503,ncol=7)

for(i in 1:503){
  vec <-subset(CapstoneData[i,],select = Y00:Y93)
  output[i,1] <-CapstoneData$SPP[i]
  output[i,2] <-CapstoneData$SEROTINOUS[i]
  output[i,3] <-CapstoneData$LATITUDE[i]
  output[i,4] <-CapstoneData$LONGITUDE[i]

  raw[[i]] <-as.numeric(as.character(vec))
  L[[i]] <-subset(raw[[i]],raw[[i]]>0)

  output[i,5]<-round(mean(L[[i]]),2)
  output[i,6]<-(sd(L[[i]]))
  output[i,7]<-((sd(L[[i]])/mean(L[[i]])))
}
output

    #Output Results Example#
       [,1]                     [,2]   [,3]     [,4]      [,5]        [,6]                [,7]               
      [1,] "ABIES"                "N"  "53"     "122"     "2.39"      "1.30999958057203"  "0.547462511283834"
      [2,] "ABIES AMABILIS"       "N"  "48.4"   "122"     "9.67"      "5.5075705472861"   "0.569748677305459"
      .......(501 more rows not shown here)

我不太确定我是否可以在没有示例数据的情况下遵循您的代码,但我认为您想要类似的东西:

library(dplyr)
library(tidyr)

summary_data = 
  CapstoneData %>%
  gather(sample_number, Y, Y00:Y93) %>%
  filter(Y > 0) %>%
  group_by(SPP, SEROTINOUS, LATITUDE, LONGITUDE) %>%
  summarize(coefficient_of_variation_of_Y = sd(Y)/mean(Y))

(coefficient_of_variation_of_Y ~ LATITUDE + SEROTINOUS) %>%
  lm(summary_data) %>%
  summary