Pandas:更快地将字符串元组列表转换为数据帧?

Pandas: convert list of string tuples to dataframe faster?

从文本字段中我有以下 输入 系列,包含地理坐标元组作为字符串:

import pandas as pd

coords = pd.Series([
   '(29.65271977700047, -82.33086252299967)',
   '(29.652914019000434, -82.42682220199964)',
   '(29.65301114200048, -82.36455186899968)',
   '(29.642610841000476, -82.29853169599966)',
])

我想解析这些元组中的数字并得到以下 结果 DataFrame:

         lat        lon
0  29.652720 -82.330863
1  29.652914 -82.426822
2  29.653011 -82.364552
3  29.642611 -82.298532

这是我想出的:

str_coords = coords.str[1:-1].str.split(', ')
latlon = str_coords.apply(pd.Series).astype(float)
latlon.columns = ['lat', 'lon']

我的 问题 :对 .apply(pd.Series) 的调用在实际列表中占用了 "forever",该列表有大约 120 万个条目。有没有更快的方法?

另一种访问列表第一个和第二个元素的方法也是通过 str:

In [174]: coords = pd.Series([
   .....:    '(29.65271977700047, -82.33086252299967)',
   .....:    '(29.652914019000434, -82.42682220199964)',
   .....:    '(29.65301114200048, -82.36455186899968)',
   .....:    '(29.642610841000476, -82.29853169599966)'])

In [175]: str_coords = coords.str[1:-1].str.split(', ')

In [176]: coords_df = pd.DataFrame({'lat': str_coords.str[0], 'lon': str_coords.str[1]})

In [177]: coords_df.astype(float).head()
Out[177]:
         lat        lon
0  29.652720 -82.330863
1  29.652914 -82.426822
2  29.653011 -82.364552
3  29.642611 -82.298532
4  29.652720 -82.330863

一些时间表明我的解决方案和@ajcr 的解决方案都比 apply(pd.Series) 方法快得多(并且两者之间的差异可以忽略不计):

In [197]: coords = pd.Series([
   .....:    '(29.65271977700047, -82.33086252299967)',
   .....:    '(29.652914019000434, -82.42682220199964)',
   .....:    '(29.65301114200048, -82.36455186899968)',
   .....:    '(29.642610841000476, -82.29853169599966)'])

In [198]: coords = pd.concat([coords]*1000, ignore_index=True)


In [199]: %%timeit
   .....: str_coords = coords.str[1:-1].str.split(', ')
   .....: df_coords = pd.DataFrame({'lat': str_coords.str[0], 'lon': str_coords.str[1]}, dtype=float)
   .....:
100 loops, best of 3: 14.1 ms per loop

In [200]: %%timeit
   .....: str_coords = coords.str[1:-1].str.split(', ')
   .....: df_coords = str_coords.apply(pd.Series).astype(float)
   .....:
1 loops, best of 3: 821 ms per loop

In [201]: %%timeit
   .....: df_coords = coords.str.extract(r'\((?P<lat>[\d\.]+),\s+(?P<lon>[^()\s,]+)\)')
   .....: df_coords.astype(float)
   .....:
100 loops, best of 3: 16.2 ms per loop

另一种方法是使用矢量化字符串方法 extract:

>>> coords.str.extract(r'\((?P<lat>[\-\d\.]+),\s+(?P<lon>[\-\d\.]+)\)')
                  lat                 lon
0   29.65271977700047  -82.33086252299967
1  29.652914019000434  -82.42682220199964
2   29.65301114200048  -82.36455186899968
3  29.642610841000476  -82.29853169599966

您可以将命名的正则表达式捕获组传递给 extract - 它会创建一个以组名作为列名的 DataFrame。

然后您可以将此 DataFrame df 转换为 float 数据类型:

>>> df.astype(float)
         lat        lon
0  29.652720 -82.330863
1  29.652914 -82.426822
2  29.653011 -82.364552
3  29.642611 -82.298532