pandas - groupby 和过滤连续值
pandas - groupby and filtering for consecutive values
我有这个数据框 df
:
U,Datetime
01,2015-01-01 20:00:00
01,2015-02-01 20:05:00
01,2015-04-01 21:00:00
01,2015-05-01 22:00:00
01,2015-07-01 22:05:00
02,2015-08-01 20:00:00
02,2015-09-01 21:00:00
02,2014-01-01 23:00:00
02,2014-02-01 22:05:00
02,2015-01-01 20:00:00
02,2014-03-01 21:00:00
03,2015-10-01 20:00:00
03,2015-11-01 21:00:00
03,2015-12-01 23:00:00
03,2015-01-01 22:05:00
03,2015-02-01 20:00:00
03,2015-05-01 21:00:00
03,2014-01-01 20:00:00
03,2014-02-01 21:00:00
由 U
和一个 Datetime
对象制作。我想做的是过滤在 months/year 中至少连续出现三次的 U
值。到目前为止,我已按 U
、year
和 month
分组为:
m = df.groupby(['U',df.index.year,df.index.month]).size()
获得:
U
1 2015 1 1
2 1
4 1
5 1
7 1
2 2014 1 1
2 1
3 1
2015 1 1
8 1
9 1
3 2014 1 1
2 1
2015 1 1
2 1
5 1
10 1
11 1
12 1
第三列与不同 months/year 中的出现有关。在这种情况下,只有 02
和 03
的 U
值在 months/year 中包含至少三个连续值。现在我无法弄清楚如何 select 这些用户并将他们从列表中取出,或者只是将他们保留在原始数据框中 df
并丢弃其他用户。我也试过:
g = m.groupby(level=[0,1]).diff()
但是我无法得到任何有用的信息。
我终于想出了解决办法 :) .
为了让您了解自定义函数的工作原理,它只是从之前的值中减去月份的值,结果当然应该是 one
,并且这应该发生两次,例如,如果你有一个数字列表 [5 , 6 , 7]
,所以 7 - 6 = 1
和 6 - 5 = 1
, 1
这里出现了两次所以条件已经满足
In [80]:
df.reset_index(inplace=True)
In [281]:
df['month'] = df.Datetime.dt.month
df['year'] = df.Datetime.dt.year
df
Out[281]:
Datetime U month year
0 2015-01-01 20:00:00 1 1 2015
1 2015-02-01 20:05:00 1 2 2015
2 2015-04-01 21:00:00 1 4 2015
3 2015-05-01 22:00:00 1 5 2015
4 2015-07-01 22:05:00 1 7 2015
5 2015-08-01 20:00:00 2 8 2015
6 2015-09-01 21:00:00 2 9 2015
7 2014-01-01 23:00:00 2 1 2014
8 2014-02-01 22:05:00 2 2 2014
9 2015-01-01 20:00:00 2 1 2015
10 2014-03-01 21:00:00 2 3 2014
11 2015-10-01 20:00:00 3 10 2015
12 2015-11-01 21:00:00 3 11 2015
13 2015-12-01 23:00:00 3 12 2015
14 2015-01-01 22:05:00 3 1 2015
15 2015-02-01 20:00:00 3 2 2015
16 2015-05-01 21:00:00 3 5 2015
17 2014-01-01 20:00:00 3 1 2014
18 2014-02-01 21:00:00 3 2 2014
In [284]:
g = df.groupby([df['U'] , df.year])
In [86]:
res = g.filter(lambda x : is_at_least_three_consec(x['month'].diff().values.tolist()))
res
Out[86]:
Datetime U month year
7 2014-01-01 23:00:00 2 1 2014
8 2014-02-01 22:05:00 2 2 2014
10 2014-03-01 21:00:00 2 3 2014
11 2015-10-01 20:00:00 3 10 2015
12 2015-11-01 21:00:00 3 11 2015
13 2015-12-01 23:00:00 3 12 2015
14 2015-01-01 22:05:00 3 1 2015
15 2015-02-01 20:00:00 3 2 2015
16 2015-05-01 21:00:00 3 5 2015
如果您想查看自定义函数的结果
In [84]:
res = g['month'].agg(lambda x : is_at_least_three_consec(x.diff().values.tolist()))
res
Out[84]:
U year
1 2015 False
2 2014 True
2015 False
3 2014 False
2015 True
Name: month, dtype: bool
自定义函数是这样实现的
In [53]:
def is_at_least_three_consec(month_diff):
consec_count = 0
#print(month_diff)
for index , val in enumerate(month_diff):
if index != 0 and val == 1:
consec_count += 1
if consec_count == 2:
return True
else:
consec_count = 0
return False
我有这个数据框 df
:
U,Datetime
01,2015-01-01 20:00:00
01,2015-02-01 20:05:00
01,2015-04-01 21:00:00
01,2015-05-01 22:00:00
01,2015-07-01 22:05:00
02,2015-08-01 20:00:00
02,2015-09-01 21:00:00
02,2014-01-01 23:00:00
02,2014-02-01 22:05:00
02,2015-01-01 20:00:00
02,2014-03-01 21:00:00
03,2015-10-01 20:00:00
03,2015-11-01 21:00:00
03,2015-12-01 23:00:00
03,2015-01-01 22:05:00
03,2015-02-01 20:00:00
03,2015-05-01 21:00:00
03,2014-01-01 20:00:00
03,2014-02-01 21:00:00
由 U
和一个 Datetime
对象制作。我想做的是过滤在 months/year 中至少连续出现三次的 U
值。到目前为止,我已按 U
、year
和 month
分组为:
m = df.groupby(['U',df.index.year,df.index.month]).size()
获得:
U
1 2015 1 1
2 1
4 1
5 1
7 1
2 2014 1 1
2 1
3 1
2015 1 1
8 1
9 1
3 2014 1 1
2 1
2015 1 1
2 1
5 1
10 1
11 1
12 1
第三列与不同 months/year 中的出现有关。在这种情况下,只有 02
和 03
的 U
值在 months/year 中包含至少三个连续值。现在我无法弄清楚如何 select 这些用户并将他们从列表中取出,或者只是将他们保留在原始数据框中 df
并丢弃其他用户。我也试过:
g = m.groupby(level=[0,1]).diff()
但是我无法得到任何有用的信息。
我终于想出了解决办法 :) .
为了让您了解自定义函数的工作原理,它只是从之前的值中减去月份的值,结果当然应该是 one
,并且这应该发生两次,例如,如果你有一个数字列表 [5 , 6 , 7]
,所以 7 - 6 = 1
和 6 - 5 = 1
, 1
这里出现了两次所以条件已经满足
In [80]:
df.reset_index(inplace=True)
In [281]:
df['month'] = df.Datetime.dt.month
df['year'] = df.Datetime.dt.year
df
Out[281]:
Datetime U month year
0 2015-01-01 20:00:00 1 1 2015
1 2015-02-01 20:05:00 1 2 2015
2 2015-04-01 21:00:00 1 4 2015
3 2015-05-01 22:00:00 1 5 2015
4 2015-07-01 22:05:00 1 7 2015
5 2015-08-01 20:00:00 2 8 2015
6 2015-09-01 21:00:00 2 9 2015
7 2014-01-01 23:00:00 2 1 2014
8 2014-02-01 22:05:00 2 2 2014
9 2015-01-01 20:00:00 2 1 2015
10 2014-03-01 21:00:00 2 3 2014
11 2015-10-01 20:00:00 3 10 2015
12 2015-11-01 21:00:00 3 11 2015
13 2015-12-01 23:00:00 3 12 2015
14 2015-01-01 22:05:00 3 1 2015
15 2015-02-01 20:00:00 3 2 2015
16 2015-05-01 21:00:00 3 5 2015
17 2014-01-01 20:00:00 3 1 2014
18 2014-02-01 21:00:00 3 2 2014
In [284]:
g = df.groupby([df['U'] , df.year])
In [86]:
res = g.filter(lambda x : is_at_least_three_consec(x['month'].diff().values.tolist()))
res
Out[86]:
Datetime U month year
7 2014-01-01 23:00:00 2 1 2014
8 2014-02-01 22:05:00 2 2 2014
10 2014-03-01 21:00:00 2 3 2014
11 2015-10-01 20:00:00 3 10 2015
12 2015-11-01 21:00:00 3 11 2015
13 2015-12-01 23:00:00 3 12 2015
14 2015-01-01 22:05:00 3 1 2015
15 2015-02-01 20:00:00 3 2 2015
16 2015-05-01 21:00:00 3 5 2015
如果您想查看自定义函数的结果
In [84]:
res = g['month'].agg(lambda x : is_at_least_three_consec(x.diff().values.tolist()))
res
Out[84]:
U year
1 2015 False
2 2014 True
2015 False
3 2014 False
2015 True
Name: month, dtype: bool
自定义函数是这样实现的
In [53]:
def is_at_least_three_consec(month_diff):
consec_count = 0
#print(month_diff)
for index , val in enumerate(month_diff):
if index != 0 and val == 1:
consec_count += 1
if consec_count == 2:
return True
else:
consec_count = 0
return False