将最小值替换为 numpy 数组中的另一个
replace min value to another in numpy array
假设我们有这个数组,我想用数字 50 替换最小值
import numpy as np
numbers = np.arange(20)
numbers[numbers.min()] = 50
所以输出是[50,1,2,3,....20]
但现在我遇到了问题:
numbers = np.arange(20).reshape(5,4)
numbers[numbers.min(axis=1)]=50
获得[[50,1,2,3],[50,5,6,7],....]
但是我得到这个错误:
IndexError: index 8 is out of bounds for axis 0 with size 5 ....
有任何帮助的想法吗?
您需要使用 numpy.argmin
而不是 numpy.min
:
In [89]: numbers = np.arange(20).reshape(5,4)
In [90]: numbers[np.arange(len(numbers)), numbers.argmin(axis=1)] = 50
In [91]: numbers
Out[91]:
array([[50, 1, 2, 3],
[50, 5, 6, 7],
[50, 9, 10, 11],
[50, 13, 14, 15],
[50, 17, 18, 19]])
In [92]: numbers = np.arange(20).reshape(5,4)
In [93]: numbers[1,3] = -5 # Let's make sure that mins are not on same column
In [94]: numbers[np.arange(len(numbers)), numbers.argmin(axis=1)] = 50
In [95]: numbers
Out[95]:
array([[50, 1, 2, 3],
[ 4, 5, 6, 50],
[50, 9, 10, 11],
[50, 13, 14, 15],
[50, 17, 18, 19]])
(我认为我原来的答案是错误的,我混淆了行和列,这是对的)
假设我们有这个数组,我想用数字 50 替换最小值
import numpy as np
numbers = np.arange(20)
numbers[numbers.min()] = 50
所以输出是[50,1,2,3,....20]
但现在我遇到了问题:
numbers = np.arange(20).reshape(5,4)
numbers[numbers.min(axis=1)]=50
获得[[50,1,2,3],[50,5,6,7],....]
但是我得到这个错误:
IndexError: index 8 is out of bounds for axis 0 with size 5 ....
有任何帮助的想法吗?
您需要使用 numpy.argmin
而不是 numpy.min
:
In [89]: numbers = np.arange(20).reshape(5,4)
In [90]: numbers[np.arange(len(numbers)), numbers.argmin(axis=1)] = 50
In [91]: numbers
Out[91]:
array([[50, 1, 2, 3],
[50, 5, 6, 7],
[50, 9, 10, 11],
[50, 13, 14, 15],
[50, 17, 18, 19]])
In [92]: numbers = np.arange(20).reshape(5,4)
In [93]: numbers[1,3] = -5 # Let's make sure that mins are not on same column
In [94]: numbers[np.arange(len(numbers)), numbers.argmin(axis=1)] = 50
In [95]: numbers
Out[95]:
array([[50, 1, 2, 3],
[ 4, 5, 6, 50],
[50, 9, 10, 11],
[50, 13, 14, 15],
[50, 17, 18, 19]])
(我认为我原来的答案是错误的,我混淆了行和列,这是对的)