使用 python 在大文件中搜索字符串的更快方法

Faster way to search strings in big file with python

我有两个文本文件需要处理。这是我的情况:

问题是,其中一个文件已损坏。我们称它为 N5。 N5 的每一行字符串应该如下所示:'a5 b5 c5 d5 e5\tf5'

相反,它是:'a5b5 c5 d5 e5\tf5'

我正在尝试从另一个文件中恢复它,我们称它为 N4,它看起来像这样:'a4 b4 c4 d4\tf4'

我想做的是用N4把N5中的a5b5分开,可能会有三种结果:

  1. 'a4 b4 c4 d4' 等于 'a5 b5 c5 d5'
  2. 'a4 b4 c4 d4' 等于 'b5 c5 d5 e5'
  3. N5 中没有 N4 的匹配项。

在情况1和2中,我可以得到答案。而在3中,N4中查找完成需要140秒左右。

我现在用list来存储N4和N5,下面是我比较它们的代码。

# test data
N4 = ['a1 b1 c1 e1\t3', 'a2 b2 c2 e2\t2', 'c3 e3 f3 g3\t3']
N5 = ['a1b1 c1 e1 f1\t2', 'a2b c2 e2 f2\t1', 'b3c3 e3 f3 g3\t3']

# result stroage
list_result = []
list_result_no_none = []

counter_none = 0

list_len = len(N4)

for each_item in N5:
    counter_list_len = 0
    list_str_2 = str(each_item).split(' ')
    list_str_2_2 = str(list_str_2[3]).split('\t')
    str_list_str_2_0 = str(list_str_2[0])
    for each_item in N4:
        list_str_1 = str(each_item).split(' ')
        list_str_1_2 = str(list_str_1[3]).split('\t')

        # if n4 y == n5
        if (str(list_str_1[0])+str(list_str_1[1]) == str(list_str_2[0]) and \
           (str(list_str_1[2]) == str(list_str_2[1]) and \
           (str(list_str_1_2[0]) == str(list_str_2[2])) and \
           (str(list_str_1_2[1]) >= str(list_str_2_2[1])))) :

            list_result.append(list_str_1[0] +' '+ list_str_1[1] +' '+ list_str_1[2] +' '+ list_str_1_2[0] +' '+ list_str_2[3])
            list_result_no_none.append(list_str_1[0] +' '+ list_str_1[1] +' '+ list_str_1[2] +' '+ list_str_1_2[0] +' '+ list_str_2[3])
        break

        # if x n4 == n5
        elif ((str(list_str_1[0]) in (str(list_str_2[0]))) and \
            (str(list_str_1[1]) == str(list_str_2[1])) and \
            (str(list_str_1[2]) == str(list_str_2[2])) and \
            (str(list_str_1_2[0]) == str(list_str_2_2[0]) and \
            (str(list_str_1_2[1]) >= str(list_str_2_2[1])))):

            list_result.append(str_list_str_2_0[0:(str(list_str_2[0]).find(str(list_str_1[0])))]\
            +' '+ str_list_str_2_0[(str(list_str_2[0]).find(str(list_str_1[0]))):len(list_str_2[0])]\
            +' '+ list_str_1[1] +' '+ list_str_1[2] +' '+ list_str_2[3])
        list_result_no_none.append(str_list_str_2_0[0:(str(list_str_2[0]).find(str(list_str_1[0])))]\
            +' '+ str_list_str_2_0[(str(list_str_2[0]).find(str(list_str_1[0]))):len(list_str_2[0])]\
            +' '+ list_str_1[1] +' '+ list_str_1[2] +' '+ list_str_2[3])
        break

        # not found
        else:
            counter_list_len += 1
            if counter_list_len == list_len:
                list_result.append('none' +' '+ list_str_2[0] +' '+ list_str_2[1] +' '+ list_str_2[2] +' '+ list_str_2[3])
                counter_none += 1


print(list_result)
print(list_result_no_none)
print("Percentage of not found: %.2f" % ((100*(counter_none/len(N5)))) + '%')

它适用于小规模,但在实际文件上需要 运行 的时间。

我是 python 的新手,对其他编程语言几乎没有经验。所以如果我的问题对你来说看起来很愚蠢,我很抱歉。另外,我不是母语人士,所以为我糟糕的英语道歉。

您可以将一些列表转换为生成器,这会大大减少内存消耗。只有N4列表必须在内存中,因为遍历多次:

def iter_file(filename):
    with open(filename) as inp:
        for line in inp:
            line = line.split(' ')
            yield line[:-1] + line[-1].split('\t')

def do_correction(n4, n5):
    n4 = list(n4)

    for words_n5 in n5:
        for words_n4 in n4:

            # if n4 y == n5
            if (words_n4[0]+words_n4[1] == words_n5[0] and
                words_n4[2] == words_n5[1] and
                words_n4[3] == words_n5[2] and
                words_n4[4] >= words_n5[3]):
                yield words_n4[:-1] + words_n5[3:]
                break

            # if x n4 == n5
            elif (words_n4[0] in words_n5[0] and
                words_n4[1] == words_n5[1] and
                words_n4[2] == words_n5[2] and
                words_n4[3] == words_n5[3] and
                words_n4[4] >= words_n5[4]):
                idx = words_n5[0].find(words_n4[0])
                yield [words_n5[:idx], words_n5[idx:]], words_n5[1:]
                break
        else: # not found
            yield ['none'] + words_n5

with open('corrected', 'w') as output:
    for words in do_correction(iter_file('N4'), iter_file('N5')):
        output.write('%s\t%s' %(' '.join(words[:-1]), words[-1]))

接下来,您可以将 N4 的部分内容转换成字典,这样查找速度会更快:

from collections import defaultdict

def iter_file(filename):
    with open(filename) as inp:
        for line in inp:
            line = line.split(' ')
            yield line[:-1] + line[-1].split('\t')

def do_correction(n4, n5):
    n4_dict = defaultdict(list)
    for words_n4 in n4:
        n4[words_n4[2], words_n4[3]].append(words_n4)

    for words_n5 in n5:
        words_n4 = next(
            (words_n4 for words_n4 in n4_dict[words_n5[1], words_n5[2]]
                if (words_n4[0]+words_n4[1] == words_n5[0] and
                words_n4[4] >= words_n5[3])),
            None)
        if words_n4:
            yield words_n4[:-1] + words_n5[3:]
        else:
            words_n4 = next(
                (words_n4 for words_n4 in n4_dict[words_n5[2], words_n5[3]]
                    if (words_n4[0] in words_n5[0] and
                    words_n4[1] == words_n5[1] and
                    words_n4[4] >= words_n5[4])),
                None)
            if words_n4:
                idx = words_n5[0].find(words_n4[0])
                yield [words_n5[:idx], words_n5[idx:]], words_n5[1:]
            else: # not found
                yield ['none'] + words_n5

with open('corrected', 'w') as output:
    for words in do_correction(iter_file('N4'), iter_file('N5')):
        output.write('%s\t%s' %(' '.join(words[:-1]), words[-1]))