如何更改 pyspark 中的数据框列名称?

How to change dataframe column names in pyspark?

我来自 pandas 背景,习惯于将 CSV 文件中的数据读取到数据框中,然后使用简单的命令将列名称简单地更改为有用的名称:

df.columns = new_column_name_list

但是,这在使用 sqlContext 创建的 pyspark 数据帧中不起作用。 我能想出的唯一解决方案如下:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后使用更新后的模式再次加载数据框。

有没有像我们在 pandas 中做的那样更好更有效的方法?

我的spark版本是1.5.0

有很多方法可以做到这一点:

  • 选项 1. 使用 selectExpr.

     data = sqlContext.createDataFrame([("Alberto", 2), ("Dakota", 2)], 
                                       ["Name", "askdaosdka"])
     data.show()
     data.printSchema()
    
     # Output
     #+-------+----------+
     #|   Name|askdaosdka|
     #+-------+----------+
     #|Alberto|         2|
     #| Dakota|         2|
     #+-------+----------+
    
     #root
     # |-- Name: string (nullable = true)
     # |-- askdaosdka: long (nullable = true)
    
     df = data.selectExpr("Name as name", "askdaosdka as age")
     df.show()
     df.printSchema()
    
     # Output
     #+-------+---+
     #|   name|age|
     #+-------+---+
     #|Alberto|  2|
     #| Dakota|  2|
     #+-------+---+
    
     #root
     # |-- name: string (nullable = true)
     # |-- age: long (nullable = true)
    
  • 选项 2. 使用 withColumnRenamed,请注意此方法允许您“覆盖”同一列。对于 Python3,将 xrange 替换为 range

     from functools import reduce
    
     oldColumns = data.schema.names
     newColumns = ["name", "age"]
    
     df = reduce(lambda data, idx: data.withColumnRenamed(oldColumns[idx], newColumns[idx]), xrange(len(oldColumns)), data)
     df.printSchema()
     df.show()
    
  • 选项3.使用 alias, in Scala you can also use as.

     from pyspark.sql.functions import col
    
     data = data.select(col("Name").alias("name"), col("askdaosdka").alias("age"))
     data.show()
    
     # Output
     #+-------+---+
     #|   name|age|
     #+-------+---+
     #|Alberto|  2|
     #| Dakota|  2|
     #+-------+---+
    
  • 选项 4。使用 sqlContext.sql,它允许您对注册为表的 DataFrames 使用 SQL 查询。

     sqlContext.registerDataFrameAsTable(data, "myTable")
     df2 = sqlContext.sql("SELECT Name AS name, askdaosdka as age from myTable")
    
     df2.show()
    
     # Output
     #+-------+---+
     #|   name|age|
     #+-------+---+
     #|Alberto|  2|
     #| Dakota|  2|
     #+-------+---+
    
df = df.withColumnRenamed("colName", "newColName")\
       .withColumnRenamed("colName2", "newColName2")

使用这种方式的优点:对于长列列表,您只想更改少数列名称。这在这些场景中非常方便。在连接具有重复列名的表时非常有用。

如果要重命名单个列并保持其余列不变:

from pyspark.sql.functions import col
new_df = old_df.select(*[col(s).alias(new_name) if s == column_to_change else s for s in old_df.columns])

如果您想更改所有列的名称,请尝试 df.toDF(*cols)

对于单个列重命名,您仍然可以使用 toDF()。例如,

df1.selectExpr("SALARY*2").toDF("REVISED_SALARY").show()

我用这个:

from pyspark.sql.functions import col
df.select(['vin',col('timeStamp').alias('Date')]).show()

如果您想对所有列名称应用简单的转换,此代码可以解决问题:(我将所有空格替换为下划线)

new_column_name_list= list(map(lambda x: x.replace(" ", "_"), df.columns))

df = df.toDF(*new_column_name_list)

感谢@user8117731 toDf 技巧。

另一种只重命名一列的方法(使用import pyspark.sql.functions as F):

df = df.select( '*', F.col('count').alias('new_count') ).drop('count')

df.withColumnRenamed('age', 'age2')

这是我使用的方法:

创建 pyspark 会话:

import pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('changeColNames').getOrCreate()

创建数据框:

df = spark.createDataFrame(data = [('Bob', 5.62,'juice'),  ('Sue',0.85,'milk')], schema = ["Name", "Amount","Item"])

使用列名查看 df:

df.show()
+----+------+-----+
|Name|Amount| Item|
+----+------+-----+
| Bob|  5.62|juice|
| Sue|  0.85| milk|
+----+------+-----+

创建一个包含新列名称的列表:

newcolnames = ['NameNew','AmountNew','ItemNew']

更改 df 的列名:

for c,n in zip(df.columns,newcolnames):
    df=df.withColumnRenamed(c,n)

使用新列名查看 df:

df.show()
+-------+---------+-------+
|NameNew|AmountNew|ItemNew|
+-------+---------+-------+
|    Bob|     5.62|  juice|
|    Sue|     0.85|   milk|
+-------+---------+-------+

我制作了一个易于使用的函数来重命名 pyspark 数据框的多个列, 如果有人想使用它:

def renameCols(df, old_columns, new_columns):
    for old_col,new_col in zip(old_columns,new_columns):
        df = df.withColumnRenamed(old_col,new_col)
    return df

old_columns = ['old_name1','old_name2']
new_columns = ['new_name1', 'new_name2']
df_renamed = renameCols(df, old_columns, new_columns)

Be careful, both lists must be the same length.

您可以使用以下函数重命名数据框的所有列。

def df_col_rename(X, to_rename, replace_with):
    """
    :param X: spark dataframe
    :param to_rename: list of original names
    :param replace_with: list of new names
    :return: dataframe with updated names
    """
    import pyspark.sql.functions as F
    mapping = dict(zip(to_rename, replace_with))
    X = X.select([F.col(c).alias(mapping.get(c, c)) for c in to_rename])
    return X

如果您只需要更新几个列的名称,您可以在 replace_with 列表中使用相同的列名称

重命名所有列

df_col_rename(X,['a', 'b', 'c'], ['x', 'y', 'z'])

重命名一些列

df_col_rename(X,['a', 'b', 'c'], ['a', 'y', 'z'])

我们可以使用多种方法来重命名列名。

首先,让我们创建一个简单的 DataFrame。

df = spark.createDataFrame([("x", 1), ("y", 2)], 
                                  ["col_1", "col_2"])

现在让我们尝试将 col_1 重命名为 col_3。 PFB 一些方法来做同样的事情。

# Approach - 1 : using withColumnRenamed function.
df.withColumnRenamed("col_1", "col_3").show()

# Approach - 2 : using alias function.
df.select(df["col_1"].alias("col3"), "col_2").show()

# Approach - 3 : using selectExpr function.
df.selectExpr("col_1 as col_3", "col_2").show()

# Rename all columns
# Approach - 4 : using toDF function. Here you need to pass the list of all columns present in DataFrame.
df.toDF("col_3", "col_2").show()

这是输出。

+-----+-----+
|col_3|col_2|
+-----+-----+
|    x|    1|
|    y|    2|
+-----+-----+

希望对您有所帮助。

您可以使用多种方法:

  1. df1=df.withColumn("new_column","old_column").drop(col("old_column"))

  2. df1=df.withColumn("new_column","old_column")

  3. df1=df.select("old_column".alias("new_column"))

你可以放入for循环,使用zip将两个数组中的每一列名称配对。

new_name = ["id", "sepal_length_cm", "sepal_width_cm", "petal_length_cm", "petal_width_cm", "species"]

new_df = df
for old, new in zip(df.columns, new_name):
    new_df = new_df.withColumnRenamed(old, new)

我喜欢用dict来重命名df

rename = {'old1': 'new1', 'old2': 'new2'}
for col in df.schema.names:
    df = df.withColumnRenamed(col, rename[col])

方法一:

df = df.withColumnRenamed("old_column_name", "new_column_name")

方法二: 如果你想做一些计算并重命名新值

df = df.withColumn("old_column_name", F.when(F.col("old_column_name") > 1, F.lit(1)).otherwise(F.col("old_column_name"))
df = df.drop("new_column_name", "old_column_name")

from pyspark.sql.types import StructType,StructField, StringType, IntegerType

CreatingDataFrame = [("James","Sales","NY",90000,34,10000),
    ("Michael","Sales","NY",86000,56,20000),
    ("Robert","Sales","CA",81000,30,23000),
    ("Maria","Finance","CA",90000,24,23000),
    ("Raman","Finance","CA",99000,40,24000),
    ("Scott","Finance","NY",83000,36,19000),
    ("Jen","Finance","NY",79000,53,15000),
    ("Jeff","Marketing","CA",80000,25,18000),
    ("Kumar","Marketing","NY",91000,50,21000)
  ]

schema = StructType([ \
    StructField("employee_name",StringType(),True), \
    StructField("department",StringType(),True), \
    StructField("state",StringType(),True), \
    StructField("salary", IntegerType(), True), \
    StructField("age", StringType(), True), \
    StructField("bonus", IntegerType(), True) \
  ])

 
OurData = spark.createDataFrame(data=CreatingDataFrame,schema=schema)

OurData.show()

# COMMAND ----------

GrouppedBonusData=OurData.groupBy("department").sum("bonus")


# COMMAND ----------

GrouppedBonusData.show()


# COMMAND ----------

GrouppedBonusData.printSchema()

# COMMAND ----------

from pyspark.sql.functions import col

BonusColumnRenamed = GrouppedBonusData.select(col("department").alias("department"), col("sum(bonus)").alias("Total_Bonus"))
BonusColumnRenamed.show()

# COMMAND ----------

GrouppedBonusData.groupBy("department").count().show()

# COMMAND ----------

GrouppedSalaryData=OurData.groupBy("department").sum("salary")

# COMMAND ----------

GrouppedSalaryData.show()

# COMMAND ----------

from pyspark.sql.functions import col

SalaryColumnRenamed = GrouppedSalaryData.select(col("department").alias("Department"), col("sum(salary)").alias("Total_Salary"))
SalaryColumnRenamed.show()

您可以使用 'alias' 更改列名称的方法:

col('my_column').alias('new_name')

另一种可以使用'alias'的方法(可能没有提到):

df.my_column.alias('new_name')

试试下面的方法。以下方法可以让您重命名多个文件的列

参考:https://www.linkedin.com/pulse/pyspark-methods-rename-columns-kyle-gibson/

df_initial = spark.read.load('com.databricks.spark.csv')
    
    rename_dict = {
      'Alberto':'Name',
      'Dakota':'askdaosdka'
    }
    
    df_renamed = df_initial \
    .select([col(c).alias(rename_dict.get(c, c)) for c in df_initial.columns])

    
     rename_dict = {
       'FName':'FirstName',
       'LName':'LastName',
       'DOB':'BirthDate'
        }

     return df.select([col(c).alias(rename_dict.get(c, c)) for c in df.columns])


df_renamed = spark.read.load('/mnt/datalake/bronze/testData') \
.transform(renameColumns)

最简单的解决方案是使用 withColumnRenamed:

renamed_df = df.withColumnRenamed(‘name_1’, ‘New_name_1’).withColumnRenamed(‘name_2’, ‘New_name_2’)
renamed_df.show()

如果您想像我们对 Pandas 那样做,您可以使用 toDF:

Create an order of list of new columns and pass it to toDF

df_list = ["newName_1", “newName_2", “newName_3", “newName_4"]
renamed_df = df.toDF(*df_list)
renamed_df.show()