Spark 1.6.0执行器因ClassCastException死掉导致超时

Spark 1.6.0 executor dies because of ClassCastException and causes timeout

我正在尝试安装 Spark ML 管道,但我的执行程序死了。 The project is also on GitHub。这是不起作用的脚本(有点简化):

// Prepare data sets
logInfo("Getting datasets")
val emoTrainingData = sqlc.read.parquet("/tw/sentiment/emo/parsed/data.parquet")
val trainingData = emoTrainingData

// Configure the pipeline
val pipeline = new Pipeline().setStages(Array(
  new FeatureReducer().setInputCol("raw_text").setOutputCol("reduced_text"),
  new StringSanitizer().setInputCol("reduced_text").setOutputCol("text"),
  new Tokenizer().setInputCol("text").setOutputCol("raw_words"),
  new StopWordsRemover().setInputCol("raw_words").setOutputCol("words"),
  new HashingTF().setInputCol("words").setOutputCol("features"),
  new NaiveBayes().setSmoothing(0.5).setFeaturesCol("features"),
  new ColumnDropper().setDropColumns("raw_text", "reduced_text", "text", "raw_words", "words", "features")
))

// Fit the pipeline
logInfo(s"Training model on ${trainingData.count()} rows")
val model = pipeline.fit(trainingData)

执行到最后一行。它打印 "Training model on xx rows",然后它开始拟合,执行程序死亡,驱动程序没有从执行程序接收心跳并且超时,然后脚本退出。它不会越过那条线。

这是杀死执行者的异常:

java.io.IOException: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.HashMap$SerializationProxy to field org.apache.spark.executor.TaskMetrics._accumulatorUpdates of type scala.collection.immutable.Map in instance of org.apache.spark.executor.TaskMetrics
  at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1207)
  at org.apache.spark.executor.TaskMetrics.readObject(TaskMetrics.scala:219)
  at sun.reflect.GeneratedMethodAccessor15.invoke(Unknown Source)
  at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
  at java.lang.reflect.Method.invoke(Method.java:497)
  at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
  at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1900)
  at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
  at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
  at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
  at org.apache.spark.util.Utils$.deserialize(Utils.scala:92)
  at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$$anonfun$apply.apply(Executor.scala:436)
  at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$$anonfun$apply.apply(Executor.scala:426)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat.apply(Executor.scala:426)
  at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat.apply(Executor.scala:424)
  at scala.collection.Iterator$class.foreach(Iterator.scala:742)
  at scala.collection.AbstractIterator.foreach(Iterator.scala:1194)
  at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
  at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
  at org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:424)
  at org.apache.spark.executor.Executor$$anon$$anonfun$run.apply$mcV$sp(Executor.scala:468)
  at org.apache.spark.executor.Executor$$anon$$anonfun$run.apply(Executor.scala:468)
  at org.apache.spark.executor.Executor$$anon$$anonfun$run.apply(Executor.scala:468)
  at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
  at org.apache.spark.executor.Executor$$anon.run(Executor.scala:468)
  at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
  at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
  at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access1(ScheduledThreadPoolExecutor.java:180)
  at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
  at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.HashMap$SerializationProxy to field org.apache.spark.executor.TaskMetrics._accumulatorUpdates of type scala.collection.immutable.Map in instance of org.apache.spark.executor.TaskMetrics
  at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
  at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
  at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2006)
  at java.io.ObjectInputStream.defaultReadObject(ObjectInputStream.java:501)
  at org.apache.spark.executor.TaskMetrics$$anonfun$readObject.apply$mcV$sp(TaskMetrics.scala:220)
  at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1204)
  ... 32 more

稍后会导致超时:

ERROR TaskSchedulerImpl: Lost executor driver on localhost: Executor heartbeat timed out after 142918 ms

我上传了INFO级别的日志文件here。调试日志约为 500MB。

构建文件和依赖似乎没问题:

name := "tweeather"

version := "1.0.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "1.6.0",
  "org.apache.spark" %% "spark-mllib" % "1.6.0",
  "org.apache.spark" %% "spark-streaming" % "1.6.0",
  "org.apache.hadoop" % "hadoop-client" % "2.7.1",
  "com.github.fommil.netlib" % "all" % "1.1.2" pomOnly(),
  "org.twitter4j" % "twitter4j-stream" % "4.0.4",
  "org.scalaj" %% "scalaj-http" % "2.0.0",
  "com.jsuereth" %% "scala-arm" % "1.4",
  "edu.ucar" % "grib" % "4.6.3"
)

dependencyOverrides ++= Set(
  "com.fasterxml.jackson.core" % "jackson-databind" % "2.4.4",
  "org.scala-lang" % "scala-compiler" % scalaVersion.value,
  "org.scala-lang.modules" %% "scala-parser-combinators" % "1.0.4",
  "org.scala-lang.modules" %% "scala-xml" % "1.0.4",
  "jline" % "jline" % "2.12.1"
)

resolvers ++= Seq(
  "Unidata Releases" at "http://artifacts.unidata.ucar.edu/content/repositories/unidata-releases/"
)

我仍然不知道真正的原因是什么,但我 运行 脚本再次使用只有三分之一的输入数据并且它起作用了。它不再失败了。根据我的观察,只有当我有超过 10,000 个任务时它才会崩溃。

我最终将我的数据(在另一个脚本中)合并到 99 个分区中。在我再次 运行 脚本后,它成功计算了所有内容。

我遇到了同样的问题,但作业没有崩溃。它抛出了错误,但无论如何它都会完成工作。所以这似乎是一个锁定问题。

在我提高配置以使用 2 proc(localhost[2]) 后它消失了。因此,您正在进行的任务可能比您的流程可以处理的更多。