如何将参数传递给 ML Pipeline.fit 方法?

How to pass params to a ML Pipeline.fit method?

我正在尝试使用

构建集群机制

如下:


  1. 在 bigquery
    中创建基于用户级别的功能 table 示例:特征 table 看起来如何

    用户 ID |x1 |x2 |x3 |x4 |x5 |x6 |x7 |x8 |x9 |x10<br> 00013 |0.01 | 0 |0 |0 |0 |0 |0 |0.06 |0.09 | 0.001

    1. 启动默认设置集群,我正在使用 gcloud 命令行界面创建集群和 运行 作业,如图所示 here
    2. 使用提供的入门代码,我读取了 BQ table,将 RDD 转换为 Dataframe 并传递给 KMeans model/pipeline:
#!/usr/bin/python
"""BigQuery I/O PySpark example."""
import json
import pprint
import subprocess
import pyspark
import numpy as np
from pyspark.ml.clustering import KMeans
from pyspark import SparkContext
from pyspark.ml import Pipeline
from pyspark.sql import SQLContext
from pyspark.mllib.linalg import Vectors, _convert_to_vector
from pyspark.sql.types import Row
from pyspark.mllib.common import callMLlibFunc, callJavaFunc, _py2java, _java2py
sc = pyspark.SparkContext()

# Use the Google Cloud Storage bucket for temporary BigQuery export data used by the InputFormat.
# This assumes the Google Cloud Storage connector for Hadoop is configured.

bucket = sc._jsc.hadoopConfiguration().get('fs.gs.system.bucket')
project = sc._jsc.hadoopConfiguration().get('fs.gs.project.id')
input_directory ='gs://{}/hadoop/tmp/bigquery/pyspark_input'.format(bucket)
 conf = {# Input Parameters
 'mapred.bq.project.id': project,
 'mapred.bq.gcs.bucket': bucket,
 'mapred.bq.temp.gcs.path': input_directory,
 'mapred.bq.input.project.id': 'my-project',
 'mapred.bq.input.dataset.id': 'tempData',
 'mapred.bq.input.table.id': 'userFeatureInBQ'}

# Load data in from BigQuery.
table_data = sc.newAPIHadoopRDD(
 'com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat',
 'org.apache.hadoop.io.LongWritable',
 'com.google.gson.JsonObject',conf=conf)

# Tranform the userid-Feature table into feature_data RDD
 feature_data = (
 table_data
  .map(lambda (_, record): json.loads(record))
  .map(lambda   x:(x['x0'],x['x1'],x['x2'],x['x3'],x['x4'],
                  x['x5'],x['x6'],x['x7'],x['x8'],
                  x['x9'],x['x10'])))

# Function to convert each line in RDD into an array, return the vector
  def parseVector(values):
     array = np.array([float(v) for v in values])
     return _convert_to_vector(array)

# Convert the RDD into a row wise RDD
  data = feature_data.map(parseVector)
  row_rdd = data.map(lambda x: Row(x))

sqlContext = SQLContext(sc)

# cache the RDD to improve performance
row_rdd.cache()

# Create a Dataframe
df = sqlContext.createDataFrame(row_rdd, ["features"])

# cache the Dataframe
df.cache()

这是我打印到控制台的模式和 head():

|-- features: vector (nullable = true)
[Row(features=DenseVector([0.01,0,0,0,0,0,0,0.06,0.09,0.001]))]

  1. 运行聚类KMeans算法如下
    • 运行模型多次
    • 使用不同的参数(即更改#clusters 和 init_mode)
    • 计算误差或成本指标
    • 选择最佳模型参数组合
    • 使用 KMeans 作为估算器创建管道
    • 使用paramMap传递多个参数
#Define the paramMap & model
paramMap = ({'k':3,'initMode':'kmeans||'},{'k':3,'initMode':'random'},
  {'k':4,'initMode':'kmeans||'},{'k':4,'initMode':'random'},
  {'k':5,'initMode':'kmeans||'},{'k':5,'initMode':'random'},
  {'k':6,'initMode':'kmeans||'},{'k':6,'initMode':'random'},
  {'k':7,'initMode':'kmeans||'},{'k':7,'initMode':'random'},
  {'k':8,'initMode':'kmeans||'},{'k':8,'initMode':'random'},
  {'k':9,'initMode':'kmeans||'},{'k':9,'initMode':'random'},
  {'k':10,'initMode':'kmeans||'},{'k':10,'initMode':'random'})

 km = KMeans()

 # Create a Pipeline with estimator stage
 pipeline = Pipeline(stages=[km])

 # Call & fit the pipeline with the paramMap
 models = pipeline.fit(df, paramMap)`
 print models

我得到以下带有警告的输出

7:03:24 WARN org.apache.spark.mllib.clustering.KMeans: The input data was not directly cached, which may hurt performance if its parent RDDs are also uncached. [PipelineModel_443dbf939b7bd3bf7bfc, PipelineModel_4b64bb761f4efe51da50, PipelineModel_4f858411ac19beacc1a4, PipelineModel_4f58b894f1d14d79b936, PipelineModel_4b8194f7a5e6be6eaf33, PipelineModel_4fc5b6370bff1b4d7dba, PipelineModel_43e0a196f16cfd3dae57, PipelineModel_47318a54000b6826b20e, PipelineModel_411bbe1c32db6bf0a92b, PipelineModel_421ea1364d8c4c9968c8, PipelineModel_4acf9cdbfda184b00328, PipelineModel_42d1a0c61c5e45cdb3cd, PipelineModel_4f0db3c394bcc2bb9352, PipelineModel_441697f2748328de251c, PipelineModel_4a64ae517d270a1e0d5a, PipelineModel_4372bc8db92b184c05b0]


#Print the cluster centers:
for model in models:
    print vars(model)
    print model.stages[0].clusterCenters()
    print model.extractParamMap()

输出: [array([7.64676638e-07, 3.58531391e-01, 1.68879698e-03, 0.00000000e+00, 1.53477043e-02, 1.25822915e-02, 0.00000000e+00, 6.93060772e-07, 1.41766847e-03, 1.60941306e-02], array([2.36494105e-06, 1.87719732e-02, 3.73829379e-03, 0.00000000e+00, 4.20724542e-02, 2.28675684e-02, 0.00000000e+00, 5.45002249e-06, 1.17331153e-02, 1.24364600e-02])


这里是问题列表,需要帮助:

#computeError
def computeCost(model, rdd):`
"""Return the K-means cost (sum of squared distances of
 points to their nearest center) for this model on the given data."""
    cost = callMLlibFunc("computeCostKmeansModel",
                          rdd.map(_convert_to_vector),
               [_convert_to_vector(c) for c in model.clusterCenters()])
    return cost

cost= np.zeros(len(paramMap))

for i in range(len(paramMap)):
    cost[i] = cost[i] + computeCost(model[i].stages[0], feature_data)
print cost

这会在循环结束时打印出以下内容:

[ 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687]

非常感谢任何帮助/指导!谢谢!

您的参数定义不正确。它应该从特定参数映射到值,而不是从任意名称映射。您得到 k 等于 2,因为您传递的参数未被使用,并且每个模型都使用完全相同的默认参数。

让我们从示例数据开始:

import numpy as np
from pyspark.mllib.linalg import Vector

df = (sc.textFile("data/mllib/kmeans_data.txt")
  .map(lambda s: Vectors.dense(np.fromstring(s, dtype=np.float64, sep=" ")))
  .zipWithIndex()
  .toDF(["features", "id"]))

和一个Pipeline:

from pyspark.ml.clustering import KMeans
from pyspark.ml import Pipeline

km = KMeans()

pipeline = Pipeline(stages=[km])

上面提到的参数映射应该使用特定的参数作为键。例如:

params = [
    {km.k: 2, km.initMode: "k-means||"},
    {km.k: 3, km.initMode: "k-means||"},
    {km.k: 4, km.initMode: "k-means||"}
]

models = pipeline.fit(df, params=params)

assert [len(m.stages[0].clusterCenters()) for m in models] == [2, 3, 4]

备注:

  • 正确 initMode K 均值|| k-means|| 不是 kmeans||.
  • 在管道中使用参数映射并不意味着模型是并行训练的。 Spark 通过数据而非参数并行化训练过程。无非是一种方便的方法。
  • 您收到有关未缓存数据的警告,因为 K-Means 的实际输入不是 DataFrame 而是转换后的 RDD。