为 Python 的 Scipy 线性规划寻找严格大于零的解的方法

Method for finding strictly greater-than-zero solution for Python's Scipy Linear Programing

Scipy NNLS 执行此操作:

Solve argmin_x || Ax - b ||_2 for x>=0.

如果我寻求,有什么替代方法可以做到这一点 严格非零解(即 x > 0) ?

这是我使用 Scipy 的 NNLS 的 LP 代码:

import numpy as np
from numpy import array
from scipy.optimize import nnls

def by_nnls(A=None, B=None):
    """ Linear programming by NNLS """
    #print "NOF row = ", A.shape[0]
    A = np.nan_to_num(A)
    B = np.nan_to_num(B)

    x, rnorm = nnls(A,B)
    x = x / x.sum()
    # print repr(x)
    return x

B1 = array([  22.133,  197.087,   84.344,    1.466,    3.974,    0.435,
          8.291,   45.059,    5.755,    0.519,    0.   ,   30.272,
         24.92 ,   10.095])
A1 = array([[   46.35,    80.58,    48.8 ,    80.31,   489.01,    40.98,
           29.98,    44.3 ,  5882.96],
       [ 2540.73,    49.53,    26.78,    30.49,    48.51,    20.88,
           19.92,    21.05,    19.39],
       [ 2540.73,    49.53,    26.78,    30.49,    48.51,    20.88,
           19.92,    21.05,    19.39],
       [   30.95,  1482.24,   100.48,    35.98,    35.1 ,    38.65,
           31.57,    87.38,    33.39],
       [   30.95,  1482.24,   100.48,    35.98,    35.1 ,    38.65,
           31.57,    87.38,    33.39],
       [   30.95,  1482.24,   100.48,    35.98,    35.1 ,    38.65,
           31.57,    87.38,    33.39],
       [   15.99,   223.27,   655.79,  1978.2 ,    18.21,    20.51,
           19.  ,    16.19,    15.91],
       [   15.99,   223.27,   655.79,  1978.2 ,    18.21,    20.51,
           19.  ,    16.19,    15.91],
       [   16.49,    20.56,    19.08,    18.65,  4568.97,    20.7 ,
           17.4 ,    17.62,    25.51],
       [   33.84,    26.58,    18.69,    40.88,    19.17,  5247.84,
           29.39,    25.55,    18.9 ],
       [   42.66,    83.59,    99.58,    52.11,    46.84,    64.93,
           43.8 ,  7610.12,    47.13],
       [   42.66,    83.59,    99.58,    52.11,    46.84,    64.93,
           43.8 ,  7610.12,    47.13],
       [   41.63,   204.32,  4170.37,    86.95,    49.92,    87.15,
           51.88,    45.38,    42.89],
       [   81.34,    60.16,   357.92,    43.48,    36.92,    39.13,
         1772.07,    68.43,    38.07]])

用法:

In [9]: by_nnls(A=A1,B=B1)
Out[9]:
array([ 0.70089761,  0.        ,  0.06481495,  0.14325696,  0.01218972,
        0.        ,  0.02125942,  0.01906576,  0.03851557]

注意上面的零解。

你应该质疑你是否真的想要x > 0而不是x >= 0。通常后一个约束用于稀疏化结果,并且 x 中的零是可取的。除此之外,约束实际上是等效的。

如果您将 x 限制为严格大于零,则 0 将变成非常非常小的正数。如果可以通过更大的值改进解决方案,您也将获得具有原始约束的这些值。

让我们通过定义以下优化来证明这一点:求解 argmin_x || Ax - b ||_2 for x>=eps。而 eps > 0 这也满足 x > 0。查看不同 eps 的结果 x,我们得到:

你看到的是,对于mall eps,objective函数几乎没有任何区别,x[1](原解中的0之一)越来越接近到 0。 因此,从 x>0x>=0 的无穷小步骤几乎不会改变解决方案中的任何内容。出于实际目的,它们完全相似。但是,x>=0 的优点是您得到实际的 0 而不是 1.234e-20,这有助于稀疏解。

这是上面情节的代码:

from scipy.optimize import fmin_cobyla
import matplotlib.pyplot as plt

def by_minimize(A, B, eps=1e-6):
    A = np.nan_to_num(A)
    B = np.nan_to_num(B)
    def objective(x, A=A, B=B):
        return np.sum((np.dot(A, x) - B)**2)
    x0 = np.zeros(A.shape[1])
    x = fmin_cobyla(objective, x0, lambda x: x-eps)
    return x / np.sum(x), objective(x)

results = []
obj = []
e = []
for eps in np.logspace(-1, -6, 100):
    x, o = by_minimize(A=A1, B=B1, eps=eps)
    e.append(eps)
    results.append(x[1])
    obj.append(o)

h1 = plt.semilogx(e, results, 'b')
plt.ylabel('x[1]', color='b')
plt.xlabel('eps')
plt.twinx()
h2 = plt.semilogx(e, obj, 'r')
plt.ylabel('objective', color='r')
plt.yticks([])

P.S。我试图在我的代码中使用 lambda x: [1 if i>0 else -1 for i in x] 实现 x > 0 约束,但它无法收敛。

如果你真的确定你想要严格的正解,你可以使用lsq_linear,它在最新的scipy版本中可用。它比 nnls.

允许更多地控制边界
In [37]: from scipy.optimize import lsq_linear

In [38]: lsq_linear(A1, B1, bounds=(0.001, np.inf))
Out[38]: 
 active_mask: array([ 0, -1,  0,  0, -1, -1,  0,  0,  0])
        cost: 3784.3150152135881
         fun: array([ -0.06189388, -56.45892624,  56.28407376,   2.97647016,
         0.46847016,   4.00747016,  18.24947887, -18.51852113,
         0.19599207,   7.32663679,  15.0829264 , -15.1890736 ,
        -0.14570891,  -0.24341795])
     message: 'The first-order optimality measure is less than `tol`.'
         nit: 17
  optimality: 5.4491449547056092e-11
      status: 1
     success: True
           x: array([ 0.05506904,  0.001     ,  0.00501077,  0.01112669,  0.001     ,
        0.001     ,  0.00154812,  0.00147833,  0.00300156])