sklearn 管道 - 在管道中应用多项式特征变换后应用样本权重

sklearn pipeline - Applying sample weights after applying a polynomial feature transformation in a pipeline

我想应用样本权重,同时使用 sklearn 的管道,它应该进行特征转换,例如多项式,然后应用回归量,例如ExtraTrees.

我在以下两个示例中使用了以下包:

from sklearn.ensemble import ExtraTreesRegressor
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures

只要我单独转换特征并随后生成和训练模型,一切都很好:

#Feature generation
X = np.random.rand(200,4)
Y = np.random.rand(200)

#Feature transformation
poly = PolynomialFeatures(degree=2)
poly.fit_transform(X)

#Model generation and fit
clf = ExtraTreesRegressor(n_estimators=5, max_depth = 3)
weights = [1]*100 + [2]*100
clf.fit(X,Y, weights)

但在管道中执行此操作不起作用:

#Pipeline generation
pipe = Pipeline([('poly2', PolynomialFeatures(degree=2)), ('ExtraTrees', ExtraTreesRegressor(n_estimators=5, max_depth = 3))])

#Feature generation
X = np.random.rand(200,4)
Y = np.random.rand(200)

#Fitting model
clf = pipe
weights = [1]*100 + [2]*100
clf.fit(X,Y, weights)

我收到以下错误:TypeError: fit() takes at most 3 arguments (4 given) 在这个简单的例子中,修改代码没有问题,但是当我想运行在我的真实代码中对我的真实数据进行几个不同的测试时,能够使用管道和样本权重

Pipeline 文档的 fit 方法中提到了 **fit_params。您必须指定要将参数应用到管道的哪个步骤。您可以按照文档中的命名规则来实现:

For this, it enables setting parameters of the various steps using their names and the parameter name separated by a ‘__’, as in the example below.

综上所述,尝试将最后一行更改为:

clf.fit(X,Y, **{'ExtraTrees__sample_weight': weights})

This is a good example 如何在管道中使用参数。