如何将此代码推广到多变量方程?

How to generalize this code for multi variable equations?

我是 LISP 的新手。我正在学习 Andrew Ng 在 Coursera 中的机器学习课程(仍然是第一周)。我想尝试在 LISP 中做线性回归。 我编写了单变量线性回归的代码。该代码似乎工作正常。我想将其概括为多变量线性函数。我想知道如何开始这样做。我想以这样的方式结束:

(defun run-linear-regression alpha iterations training-set number-of-variables (...))

这将依次创建一个假设生成器函数,其中包含输入变量数、这些假设的偏导函数等。

以下是我目前的代码。我不需要任何人为我编写此代码,但将不胜感激有关如何去做我想做的事情的一些指导。此外,也欢迎任何关于如何改进我目前的代码(性能、风格等)的一般性评论。

(defun make-hypothesis (theta1 theta2)
  (lambda (x) 
    (+ theta1 (* x theta2))))

(defun make-cost-function (hypothesis)
  (lambda (training-data)
    (let* ((x (car training-data)) (y (cadr training-data))
       (val (- (funcall hypothesis x) y)))
      (* val val))))

(defun make-J-1 (cost-function)
  (lambda (training-set) (float 
              (/ 
               (reduce #'+ (mapcar cost-function training-set)) 
               (* 2 (length training-set))))))


(defun make-J (theta1 theta2)
  (make-J-1 (make-cost-function (make-hypothesis theta1 theta2))))

(defun make-part-deriv-1 (hypothesis)
  (lambda (test-set)
    (let ((m (length test-set)))
      (float (/
          (reduce #'+ (mapcar (lambda(elem)(- (funcall hypothesis (car elem)) (cadr elem))) test-set))
          m)))))

(defun make-part-deriv-2 (hypothesis)
  (lambda (test-set)
    (let ((m (length test-set)))
      (float (/
          (reduce #'+ (mapcar (lambda(elem)(* (- (funcall hypothesis (car elem)) (cadr elem)) (funcall hypothesis (car elem)))) test-set))
          m)))))

(defun make-learn-fn (alpha theta1 theta2 make-part-deriv)
  (lambda (test-set) 
    (let* ((hypothesis (make-hypothesis theta1 theta2)) (pdv (funcall make-part-deriv hypothesis)))
      (* alpha (funcall pdv test-set)))))

(defun make-learners (alpha)
  (list 
   (lambda (theta1 theta2 test-set) (- theta1 (funcall (make-learn-fn alpha theta1 theta2 #'make-part-deriv-1) test-set)))
   (lambda (theta1 theta2 test-set) (- theta2 (funcall (make-learn-fn alpha theta1 theta2 #'make-part-deriv-2) test-set)))))

(defun run-linear-regression (alpha iterations training-set &optional (theta1 0) (theta2 0) (printer nil))
  (let ((t1 theta1) (t2 theta2))
    (dotimes (i iterations)
      (if (not (null printer))
      (funcall printer t1 t2))
      (let* ((funcs (make-learners alpha))
         (nt1 (funcall (car funcs) t1 t2 training-set))
         (nt2 (funcall (cadr funcs) t1 t2 training-set)))
    (setq t1 nt1)
    (setq t2 nt2)))
    (list t1 t2)))

最后,我会这样称呼它:

(defvar *training-set* '((15 20) (700 6) (23 15) (19 19) (204 15) (60 150) (87 98) (17 35) (523 29)))
(run-linear-regression 0.0001 1000000 *training-set*)

我不熟悉这里的数学,但由于没有其他人写出更好的答案,这里有一些一般性建议。

您应该更改 RUN-LINEAR-REGRESSION 以获取变量列表以及学习者函数列表。例如:

(defun run-linear-regression (iterations training-set
                              variables learners)
  (let ((vars variables))
    (dotimes (i iterations)
      (setf vars (mapcar (lambda (function)
                           (funcall function vars training-set))
                         learners)))
    vars))

这将学习者作为参数而不是将它们放在函数中。您的原始代码使学习者处于循环中,这似乎没有必要,因为 MAKE-LEARNERS 仅将 ALPHA 作为参数,并且永远不会改变,因此生成的学习者将始终相同.

我们还需要更改 MAKE-LEARNERS 以便 lambda 函数采用变量列表:

(defun make-learners (alpha)
  (list (lambda (variables test-set)
          (destructuring-bind (theta1 theta2) variables
            (- theta1 (funcall (make-learn-fn alpha theta1 theta2
                                              #'make-part-deriv-1)
                               test-set))))
        (lambda (variables test-set)
          (destructuring-bind (theta1 theta2) variables
            (- theta2 (funcall (make-learn-fn alpha theta1 theta2
                                              #'make-part-deriv-2)
                               test-set))))))

这与您拥有的几乎相同,但它使用 DESTRUCTURING-BIND 从列表 VARIABLES 中提取 THETA1THETA2。现在我们可以这样调用 RUN-LINEAR-REGRESSION

(run-linear-regression 1000000 *training-set* '(0 0) (make-learners 0.0001))
;=> (42.93504 2.5061023e-4)

要添加更多变量,您可以编写一个合适的 MAKE-LEARNERS 版本。因为我不懂数学,所以我真的不能举个例子。