更新 pandas 中满足特定条件的行值

Update row values where certain condition is met in pandas

假设我有以下数据框:

更新 featanother_feat 列值的最有效方法是什么 stream 是数字 2?

是这个吗?

for index, row in df.iterrows():
    if df1.loc[index,'stream'] == 2:
       # do something

更新: 如果我有超过 100 列怎么办?我不想明确命名要更新的列。我想将每列的值除以2(流列除外)。

所以要明确我的目标是什么:

将具有流 2 的所有行中的所有值除以 2,但不更改流列

如果您需要将两列更新为相同的值,我认为您可以使用 loc

df1.loc[df1['stream'] == 2, ['feat','another_feat']] = 'aaaa'
print df1
   stream        feat another_feat
a       1  some_value   some_value
b       2        aaaa         aaaa
c       2        aaaa         aaaa
d       3  some_value   some_value

如果您需要单独更新,一种选择是使用:

df1.loc[df1['stream'] == 2, 'feat'] = 10
print df1
   stream        feat another_feat
a       1  some_value   some_value
b       2          10   some_value
c       2          10   some_value
d       3  some_value   some_value

另一个常用选项是使用 numpy.where:

df1['feat'] = np.where(df1['stream'] == 2, 10,20)
print df1
   stream  feat another_feat
a       1    20   some_value
b       2    10   some_value
c       2    10   some_value
d       3    20   some_value

编辑:如果您需要在条件为 True 的情况下不使用 stream 来划分所有列,请使用:

print df1
   stream  feat  another_feat
a       1     4             5
b       2     4             5
c       2     2             9
d       3     1             7

#filter columns all without stream
cols = [col for col in df1.columns if col != 'stream']
print cols
['feat', 'another_feat']

df1.loc[df1['stream'] == 2, cols ] = df1 / 2
print df1
   stream  feat  another_feat
a       1   4.0           5.0
b       2   2.0           2.5
c       2   1.0           4.5
d       3   1.0           7.0

如果可以使用多个条件,则使用多个 numpy.wherenumpy.select:

df0 = pd.DataFrame({'Col':[5,0,-6]})

df0['New Col1'] = np.where((df0['Col'] > 0), 'Increasing', 
                          np.where((df0['Col'] < 0), 'Decreasing', 'No Change'))

df0['New Col2'] = np.select([df0['Col'] > 0, df0['Col'] < 0],
                            ['Increasing',  'Decreasing'], 
                            default='No Change')

print (df0)
   Col    New Col1    New Col2
0    5  Increasing  Increasing
1    0   No Change   No Change
2   -6  Decreasing  Decreasing

您可以对 .ix 执行相同的操作,如下所示:

In [1]: df = pd.DataFrame(np.random.randn(5,4), columns=list('abcd'))

In [2]: df
Out[2]: 
          a         b         c         d
0 -0.323772  0.839542  0.173414 -1.341793
1 -1.001287  0.676910  0.465536  0.229544
2  0.963484 -0.905302 -0.435821  1.934512
3  0.266113 -0.034305 -0.110272 -0.720599
4 -0.522134 -0.913792  1.862832  0.314315

In [3]: df.ix[df.a>0, ['b','c']] = 0

In [4]: df
Out[4]: 
          a         b         c         d
0 -0.323772  0.839542  0.173414 -1.341793
1 -1.001287  0.676910  0.465536  0.229544
2  0.963484  0.000000  0.000000  1.934512
3  0.266113  0.000000  0.000000 -0.720599
4 -0.522134 -0.913792  1.862832  0.314315

编辑

在额外信息之后,以下将 return 所有列 - 满足某些条件的 - 减半值:

>> condition = df.a > 0
>> df[condition][[i for i in df.columns.values if i not in ['a']]].apply(lambda x: x/2)