C++ 和 Python 之间的数据损坏管道
Data corruption Piping between C++ and Python
我正在编写一些代码,从 Python 获取二进制数据,将其通过管道传输到 C++,对数据进行一些处理(在本例中计算互信息度量),然后将结果通过管道传输回python。在测试时,我发现如果我发送的数据是一组 2 个尺寸小于 1500 X 1500 的数组,一切正常,但如果我发送 2 个 2K X 2K 的数组,我会得到很多损坏的废话。
我目前认为代码的算法部分很好,因为它在使用小型 (<=1500 X1500) 阵列进行测试期间提供了预期的答案。这使我相信这是 stdin 或 stdout 管道的问题。那也许我在某处超过了一些内在的限制。
下面是Python代码和C++代码。
Python代码:
import subprocess
import struct
import sys
import numpy as np
#set up the variables needed
bytesPerDouble = 8
sizeX = 2000
sizeY = 2000
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
print str(b) + " " + str(i)
print('done')
C++代码:
主要功能:
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
//*
//write out data to pipe
columnindex = 0;
while (count<totalbytes/2) {
fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
//*/
delete [] data;
return 0;
}
如果您需要实际处理代码:
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
//write out processing status
//index = (double)ioutter;
//fwrite(&index, 8, 1, stdout);
//fflush(stdout);
//*
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
}
}
}
return rvalue;
}
使用 return 有意义的数组,我得到的输出范围在 0 和 1 之间,如下所示:
(0.0, 0.0, 0.0, 0.7160627908692593, 0.6376472316395495, 0.5728801401524277,...
对于 2Kx2K 或更高的数组,我会像这样胡说八道(即使代码将值限制在 0 和 1 之间):
(-2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820+420=228,...
我想知道为什么这段代码在分配到 0.0 和 1 之间后会破坏数据集,这是否是管道问题、stdin/stdout 问题、一些缓冲区问题排序,或者我根本没有看到的编码问题。
Update 我尝试使用 Chris 建议的代码以较小的块传递数据,但没有成功。还要注意的是,我在 stdout 上添加了一个用于 ferror 的 catch,它从未被触发,所以我很确定这些字节至少可以到达 stdout。是否有其他东西以某种方式写入标准输出?当我的程序是 运行 时,可能会有一个额外的字节进入标准输出?我觉得这值得怀疑,因为在第 10 个条目中的第 4 个 fwrite 读取中始终出现错误。
根据 Craig 的要求,这里是完整的 C++ 代码(完整的 Python 代码已经发布):它位于 3 个文件中:
main.cpp
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include "./MutualInformation.h"
double * data;
using namespace std;
void
xxwrite(unsigned char *buf, size_t wlen, FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf, 1, xlen, fo);
fflush(fo);
}
}
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
columnindex = 0;
while (count<totalbytes/2) {
xxwrite((unsigned char*)&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
delete [] data;
return 0;
}
MutualInformation.h
#include <map>
using namespace std;
class MutualInformation
{
private:
double * mData;
double * mOutput;
long mHeight;
long mWidth;
long mOffset;
public:
MutualInformation();
~MutualInformation();
bool Initialize(double * data, long Height, long Width, long Offset);
const double * getOutput();
double calcMI();
};
MutualInformation.cpp
#include "MutualInformation.h"
MutualInformation::MutualInformation()
{
this->mData = nullptr;
this->mOutput = nullptr;
this->mHeight = 0;
this->mWidth = 0;
}
MutualInformation::~MutualInformation()
{
delete[] this->mOutput;
}
bool MutualInformation::Initialize(double * data, long Height, long Width, long Offset){
bool rvalue = false;
this->mData = data;
this->mHeight = Height;
this->mWidth = Width;
this->mOffset = Offset;
//allocate output data
this->mOutput = new double[this->mHeight*this->mWidth];
return rvalue;
}
const double * MutualInformation::getOutput(){
return this->mOutput;
}
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
//cout << "problem with output";
}
}
}
//*/
return rvalue;
}
由 6502
解决
6502 下面的回答解决了我的问题。我需要明确告诉 Windows 对标准输入/标准输出使用二进制模式。为此,我必须在我的主 cpp 文件中包含 2 个新的头文件。
#include <fcntl.h>
#include <io.h>
将以下代码行(由于 Visual Studio 抱怨而从 6502 的 POSIX 版本中修改)添加到我的主要函数的开头
_setmode(_fileno(stdout), O_BINARY);
_setmode(_fileno(stdin), O_BINARY);
然后将这些行添加到我的 Python 代码中:
import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
您的 C++ fwrite
代码没有考虑到 "short" t运行sfer.
这里有一个小调整:
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
wlen = fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += wlen;
columnindex += wlen / sizeof(double);
}
注意:你仍然需要小心,因为如果wlen
returns并且它不是 sizeof(double)
的倍数。例如,如果 bytechunk
是 16 而 wlen
返回 14,则在继续循环之前您需要一个长度为 2 的额外 fwrite
。对此的概括就是将 整个 数据矩阵视为一个巨大的字节缓冲区并在其上循环。
实际上,您将获得与许多小得多的 t运行sfer 大致相同的效率,这些 t运行sfer 的上限为 [say] 1024 字节的固定(即 "known safe amount")。这是可行的,因为输出是一个字节流。
这是我经常使用的稍微更通用的解决方案:
void
xxwrite(void *buf,size_t wlen,FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf,1,xlen,fo);
fflush(fo);
}
}
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
xxwrite(&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk / sizeof(double);
}
更新:
我已经下载了你所有的代码并且运行它。我有好消息和坏消息:代码 运行 在这里很好,即使矩阵大小超过 3000。我 运行 它既使用 xxwrite
也没有使用 xxwrite
结果是一样。
使用我的 limited python 技能,我向您的 python 脚本添加了一些漂亮的打印(例如一些换行)并让它检查每个值对于 运行ge 并注释任何错误的值。脚本找到 none。此外,对这些值的目视检查没有发现任何结果 [在漂亮的打印之前这是真的,所以它没有引入任何东西]。只有很多零,然后是 0.9 运行ge.
中的块
我能看到的唯一区别是我在linux上使用gcc
[当然还有python
] .但是,从您的脚本看来,您使用 Windows [基于 C++ 可执行文件的 C:\...
路径。这个不应该对这个应用程序很重要,但我还是提到了它。
所以,管道在这里工作。您可能会尝试的一件事是将 C++ 输出定向到一个文件。然后,让脚本从文件中读回(即没有管道)并查看是否有所不同。我倾向于认为不是,但是...
此外,我不知道您在 Windows 下使用的是什么编译器和 python 实现。每当我必须这样做时,我通常都会安装 Cygwin,因为它提供了最接近 linux/Unix-like 环境的实现之一(即管道更有可能像宣传的那样工作)。
无论如何,这是修改后的脚本。另请注意,我添加了 os.getenv
以获取备用矩阵大小和 C++ 可执行文件的备用位置,以便它对我们双方都适用,而且痛苦最小
#!/usr/bin/python
import subprocess
import struct
import sys
import os
import numpy as np
val = os.getenv("MTX","2000")
sizeX = int(val)
sizeY = sizeX
print "sizeX=%d sizeY=%d" % (sizeX,sizeY)
#set up the variables needed
bytesPerDouble = 8
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = os.getenv("CPGM",None);
if command is None:
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
def prt(i,b):
hangflg = 0
per = 8
for j in range(0,len(b)):
if ((j % per) == 0):
print("[%d,%d]" % (i,j)),
q = b[j]
print(q),
hangflg = 1
if (q < 0.0) or (q > 1.0):
print("=WTF"),
if ((j % per) == (per - 1)):
print("")
hangflg = 0
if (hangflg):
print("")
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
prt(i,b)
###print str(b) + " " + str(i)
###print str(i) + ": " + str(b)
print('done')
问题是 windows 中的 stdin
/stdout
是以文本模式打开的,而不是以二进制模式打开的,因此当字符 13 (\r
) 已发送。
您可以在 Python 和
中设置例如二进制模式
import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
在 C++ 中
_setmode(fileno(stdout), O_BINARY);
_setmode(fileno(stdin), O_BINARY);
我正在编写一些代码,从 Python 获取二进制数据,将其通过管道传输到 C++,对数据进行一些处理(在本例中计算互信息度量),然后将结果通过管道传输回python。在测试时,我发现如果我发送的数据是一组 2 个尺寸小于 1500 X 1500 的数组,一切正常,但如果我发送 2 个 2K X 2K 的数组,我会得到很多损坏的废话。
我目前认为代码的算法部分很好,因为它在使用小型 (<=1500 X1500) 阵列进行测试期间提供了预期的答案。这使我相信这是 stdin 或 stdout 管道的问题。那也许我在某处超过了一些内在的限制。
下面是Python代码和C++代码。
Python代码:
import subprocess
import struct
import sys
import numpy as np
#set up the variables needed
bytesPerDouble = 8
sizeX = 2000
sizeY = 2000
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
print str(b) + " " + str(i)
print('done')
C++代码: 主要功能:
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
//*
//write out data to pipe
columnindex = 0;
while (count<totalbytes/2) {
fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
//*/
delete [] data;
return 0;
}
如果您需要实际处理代码:
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
//write out processing status
//index = (double)ioutter;
//fwrite(&index, 8, 1, stdout);
//fflush(stdout);
//*
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
}
}
}
return rvalue;
}
使用 return 有意义的数组,我得到的输出范围在 0 和 1 之间,如下所示:
(0.0, 0.0, 0.0, 0.7160627908692593, 0.6376472316395495, 0.5728801401524277,...
对于 2Kx2K 或更高的数组,我会像这样胡说八道(即使代码将值限制在 0 和 1 之间):
(-2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820+420=228,...
我想知道为什么这段代码在分配到 0.0 和 1 之间后会破坏数据集,这是否是管道问题、stdin/stdout 问题、一些缓冲区问题排序,或者我根本没有看到的编码问题。
Update 我尝试使用 Chris 建议的代码以较小的块传递数据,但没有成功。还要注意的是,我在 stdout 上添加了一个用于 ferror 的 catch,它从未被触发,所以我很确定这些字节至少可以到达 stdout。是否有其他东西以某种方式写入标准输出?当我的程序是 运行 时,可能会有一个额外的字节进入标准输出?我觉得这值得怀疑,因为在第 10 个条目中的第 4 个 fwrite 读取中始终出现错误。
根据 Craig 的要求,这里是完整的 C++ 代码(完整的 Python 代码已经发布):它位于 3 个文件中:
main.cpp
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include "./MutualInformation.h"
double * data;
using namespace std;
void
xxwrite(unsigned char *buf, size_t wlen, FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf, 1, xlen, fo);
fflush(fo);
}
}
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
columnindex = 0;
while (count<totalbytes/2) {
xxwrite((unsigned char*)&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
delete [] data;
return 0;
}
MutualInformation.h
#include <map>
using namespace std;
class MutualInformation
{
private:
double * mData;
double * mOutput;
long mHeight;
long mWidth;
long mOffset;
public:
MutualInformation();
~MutualInformation();
bool Initialize(double * data, long Height, long Width, long Offset);
const double * getOutput();
double calcMI();
};
MutualInformation.cpp
#include "MutualInformation.h"
MutualInformation::MutualInformation()
{
this->mData = nullptr;
this->mOutput = nullptr;
this->mHeight = 0;
this->mWidth = 0;
}
MutualInformation::~MutualInformation()
{
delete[] this->mOutput;
}
bool MutualInformation::Initialize(double * data, long Height, long Width, long Offset){
bool rvalue = false;
this->mData = data;
this->mHeight = Height;
this->mWidth = Width;
this->mOffset = Offset;
//allocate output data
this->mOutput = new double[this->mHeight*this->mWidth];
return rvalue;
}
const double * MutualInformation::getOutput(){
return this->mOutput;
}
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
//cout << "problem with output";
}
}
}
//*/
return rvalue;
}
由 6502
解决6502 下面的回答解决了我的问题。我需要明确告诉 Windows 对标准输入/标准输出使用二进制模式。为此,我必须在我的主 cpp 文件中包含 2 个新的头文件。
#include <fcntl.h>
#include <io.h>
将以下代码行(由于 Visual Studio 抱怨而从 6502 的 POSIX 版本中修改)添加到我的主要函数的开头
_setmode(_fileno(stdout), O_BINARY);
_setmode(_fileno(stdin), O_BINARY);
然后将这些行添加到我的 Python 代码中:
import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
您的 C++ fwrite
代码没有考虑到 "short" t运行sfer.
这里有一个小调整:
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
wlen = fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += wlen;
columnindex += wlen / sizeof(double);
}
注意:你仍然需要小心,因为如果wlen
returns并且它不是 sizeof(double)
的倍数。例如,如果 bytechunk
是 16 而 wlen
返回 14,则在继续循环之前您需要一个长度为 2 的额外 fwrite
。对此的概括就是将 整个 数据矩阵视为一个巨大的字节缓冲区并在其上循环。
实际上,您将获得与许多小得多的 t运行sfer 大致相同的效率,这些 t运行sfer 的上限为 [say] 1024 字节的固定(即 "known safe amount")。这是可行的,因为输出是一个字节流。
这是我经常使用的稍微更通用的解决方案:
void
xxwrite(void *buf,size_t wlen,FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf,1,xlen,fo);
fflush(fo);
}
}
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
xxwrite(&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk / sizeof(double);
}
更新:
我已经下载了你所有的代码并且运行它。我有好消息和坏消息:代码 运行 在这里很好,即使矩阵大小超过 3000。我 运行 它既使用 xxwrite
也没有使用 xxwrite
结果是一样。
使用我的 limited python 技能,我向您的 python 脚本添加了一些漂亮的打印(例如一些换行)并让它检查每个值对于 运行ge 并注释任何错误的值。脚本找到 none。此外,对这些值的目视检查没有发现任何结果 [在漂亮的打印之前这是真的,所以它没有引入任何东西]。只有很多零,然后是 0.9 运行ge.
中的块我能看到的唯一区别是我在linux上使用gcc
[当然还有python
] .但是,从您的脚本看来,您使用 Windows [基于 C++ 可执行文件的 C:\...
路径。这个不应该对这个应用程序很重要,但我还是提到了它。
所以,管道在这里工作。您可能会尝试的一件事是将 C++ 输出定向到一个文件。然后,让脚本从文件中读回(即没有管道)并查看是否有所不同。我倾向于认为不是,但是...
此外,我不知道您在 Windows 下使用的是什么编译器和 python 实现。每当我必须这样做时,我通常都会安装 Cygwin,因为它提供了最接近 linux/Unix-like 环境的实现之一(即管道更有可能像宣传的那样工作)。
无论如何,这是修改后的脚本。另请注意,我添加了 os.getenv
以获取备用矩阵大小和 C++ 可执行文件的备用位置,以便它对我们双方都适用,而且痛苦最小
#!/usr/bin/python
import subprocess
import struct
import sys
import os
import numpy as np
val = os.getenv("MTX","2000")
sizeX = int(val)
sizeY = sizeX
print "sizeX=%d sizeY=%d" % (sizeX,sizeY)
#set up the variables needed
bytesPerDouble = 8
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = os.getenv("CPGM",None);
if command is None:
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
def prt(i,b):
hangflg = 0
per = 8
for j in range(0,len(b)):
if ((j % per) == 0):
print("[%d,%d]" % (i,j)),
q = b[j]
print(q),
hangflg = 1
if (q < 0.0) or (q > 1.0):
print("=WTF"),
if ((j % per) == (per - 1)):
print("")
hangflg = 0
if (hangflg):
print("")
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
prt(i,b)
###print str(b) + " " + str(i)
###print str(i) + ": " + str(b)
print('done')
问题是 windows 中的 stdin
/stdout
是以文本模式打开的,而不是以二进制模式打开的,因此当字符 13 (\r
) 已发送。
您可以在 Python 和
中设置例如二进制模式import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
在 C++ 中
_setmode(fileno(stdout), O_BINARY);
_setmode(fileno(stdin), O_BINARY);