如何使用 UCI 的数据集对 RVM 进行分类?
How to use dataset of UCI for classification of RVM?
我已经从 UCI 下载了一些用于 RVM 分类的数据集 task.However,我不确定如何使用 it.I 猜测这些数据集必须在使用前进行归一化或做一些其他工作用于训练和测试。
例如,我在UCI.And上下载了'banknote authentication Data Set',在matlab中使用svmtrain得到一个svm模型(使用svm模型测试数据,如果svm分类结果正常,则使用rvm代码)。
>> load banknote
>> meas = banknote(:,1:4);
>> species = banknote(:,5);
>> data = [meas(:,1), meas(:,2), meas(:,3), meas(:,4)];
>> groups = ismember(species,1);
>> [train, test] = crossvalind('holdOut',groups);
>> cp = classperf(groups);
>> svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
这些是我在 matlab 中所做的,并得到以下消息:
??? Error using ==> svmtrain at 470
Unable to solve the optimization problem:
Maximum number of iterations exceeded; increase options.MaxIter.
To continue solving the problem with the current solution as the
starting point, set x0 = x before calling quadprog.
这是数据集的一部分(总行 1372,其中一些用于训练,其余用于测试):
3.6216,8.6661,-2.8073,-0.44699,0
4.5459,8.1674,-2.4586,-1.4621,0
3.866,-2.6383,1.9242,0.10645,0
3.4566,9.5228,-4.0112,-3.5944,0
0.32924,-4.4552,4.5718,-0.9888,0
4.3684,9.6718,-3.9606,-3.1625,0
3.5912,3.0129,0.72888,0.56421,0
2.0922,-6.81,8.4636,-0.60216,0
3.2032,5.7588,-0.75345,-0.61251,0
1.5356,9.1772,-2.2718,-0.73535,0
1.2247,8.7779,-2.2135,-0.80647,0
3.9899,-2.7066,2.3946,0.86291,0
1.8993,7.6625,0.15394,-3.1108,0
-1.5768,10.843,2.5462,-2.9362,0
3.404,8.7261,-2.9915,-0.57242,0
那么,关于这个问题有什么好的建议吗?谢谢大家的帮助。
稍后 commit.Use 缩放函数标准化 feature.And 如果数据集有太多特征,我们可以使用 PCA 来减少维度。
我已经从 UCI 下载了一些用于 RVM 分类的数据集 task.However,我不确定如何使用 it.I 猜测这些数据集必须在使用前进行归一化或做一些其他工作用于训练和测试。 例如,我在UCI.And上下载了'banknote authentication Data Set',在matlab中使用svmtrain得到一个svm模型(使用svm模型测试数据,如果svm分类结果正常,则使用rvm代码)。
>> load banknote
>> meas = banknote(:,1:4);
>> species = banknote(:,5);
>> data = [meas(:,1), meas(:,2), meas(:,3), meas(:,4)];
>> groups = ismember(species,1);
>> [train, test] = crossvalind('holdOut',groups);
>> cp = classperf(groups);
>> svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
这些是我在 matlab 中所做的,并得到以下消息:
??? Error using ==> svmtrain at 470
Unable to solve the optimization problem:
Maximum number of iterations exceeded; increase options.MaxIter.
To continue solving the problem with the current solution as the
starting point, set x0 = x before calling quadprog.
这是数据集的一部分(总行 1372,其中一些用于训练,其余用于测试):
3.6216,8.6661,-2.8073,-0.44699,0
4.5459,8.1674,-2.4586,-1.4621,0
3.866,-2.6383,1.9242,0.10645,0
3.4566,9.5228,-4.0112,-3.5944,0
0.32924,-4.4552,4.5718,-0.9888,0
4.3684,9.6718,-3.9606,-3.1625,0
3.5912,3.0129,0.72888,0.56421,0
2.0922,-6.81,8.4636,-0.60216,0
3.2032,5.7588,-0.75345,-0.61251,0
1.5356,9.1772,-2.2718,-0.73535,0
1.2247,8.7779,-2.2135,-0.80647,0
3.9899,-2.7066,2.3946,0.86291,0
1.8993,7.6625,0.15394,-3.1108,0
-1.5768,10.843,2.5462,-2.9362,0
3.404,8.7261,-2.9915,-0.57242,0
那么,关于这个问题有什么好的建议吗?谢谢大家的帮助。
稍后 commit.Use 缩放函数标准化 feature.And 如果数据集有太多特征,我们可以使用 PCA 来减少维度。