按顺序对数据框中的一系列行应用匹配和替换功能

Apply a match and replace function over series of rows in a dataframe in order

起始数据帧

data_start <- data.frame(marker = c("yes","yes","no","yes","no"),
                         id_out = c(5,3,1,1,7), 
                         id_new = c(6,8,9,4,2))

> data_start
  marker id_out id_new
1    yes      5      6
2    yes      3      8
3     no      1      9
4    yes      1      4
5     no      7      2

添加三列 headers,下面是空列。附加起始 var1:var3 值。

data_start[,c("var1", "var2", "var3")] <- NA
vars <- c(5,3,1)
data_start[1, 4:6] <- vars

> data_start
  marker id_out id_new var1 var2 var3
1    yes      5      6    5    3    1
2    yes      3      8   NA   NA   NA
3     no      1      9   NA   NA   NA
4    yes      1      4   NA   NA   NA
5     no      7      2   NA   NA   NA

我想通过对 IF marker = yes AND id_out 匹配任何 [=14] 的每一行应用一个函数来更新我的 var1:var3 列=],将 var1:var3 中的任何一个替换为 id_new。我找到了这个解决方案,但适用于一行代码,并且仍然需要更新该行的每个新 var1:var3 部分。

data_start[1, 4:6][data_start[1, 4:6] == data_start[1,"id_out"]] <- data_start[1,"id_new"]

每一行还取决于在再次应用该函数之前使用上一行中的值。

最终输出看起来像这样,当标记 = no 时行保持不变,随后更新每一行。

> data_final
  marker id_out id_new var1 var2 var3
1    yes      5      6    6    3    1
2    yes      3      8    6    8    1
3     no      1      9    6    8    1
4    yes      1      4    6    8    4
5     no      7      2    6    8    4

由于我必须 运行,因此将其组合得非常粗糙,但这应该可行。

data_start <- data.frame(marker = c("yes","yes","no","yes","no"),
                         id_out = c(5,3,1,1,7), 
                         id_new = c(6,8,9,4,2))

data_start[,c("var1", "var2", "var3")] <- NA
vars <- c(5,3,1)
data_start[1, 4:6] <- vars

onVars <- c("var1", "var2", "var3")

for (i in 2:nrow(data_start)) {

  print(i)

  for (var in onVars) {

    if (data_start$marker[i] == "yes" & data_start$id_out[i] == data_start[i - 1, var]) {

      data_start[i, var] <- data_start$id_new[i]

    } else {

      data_start[i, var] <- data_start[i - 1, var]

    }

  }

}

data_start 是你的输出。

糟糕,看来我可能遗漏了对第一行的评估,但希望您现在可以自己处理。

这是一个片段,即使您有超过三列,也可以让您进行此计算:

library(data.table)
dt <- data.table(marker = c("yes","yes","no","yes","no"),
                         id_out = c(5,3,1,1,7), 
                         id_new = c(6,8,9,4,2))

dt[, change := cumsum(marker == "yes")]

ref.new <- dt[marker == "yes", id_new] # Reference to values where marker is "yes"
ref.out <- dt[marker == "yes", id_out]
for (x in 1:length(ref.new)) {
  dt[, paste("var", x, sep="") := ifelse(change >= x, ref.new[x] , ref.out[x])]
}
head(dt)
#     marker id_out id_new change var1 var2 var3
#1:    yes      5      6      1    6    3    1
#2:    yes      3      8      2    6    8    1
#3:     no      1      9      2    6    8    1
#4:    yes      1      4      3    6    8    4
#5:     no      7      2      3    6    8    4

没有for循环和if好像很难找到解决方案,所以就在这里。我尝试用 c(1,3,1) 等其他设置更改原始值,代码工作正常。如果需要,我们还可以添加更多可变列。

# Re-create the data
dt <- data.table(marker = c("yes","yes","no","yes","no"),
                 id_out = c(5,3,1,1,7),
                 id_new = c(6,8,9,4,2))
var.col <- paste0("var", 1:3)
dt[1, (var.col) := .(5,3,1)]

# Processing
for(i in 1:nrow(dt)) {
  if(i > 1) dt[i, (var.col) := as.list(dt[i-1, var.col, with = F])]
  var.i <- dt[i, var.col, with = F] %in% dt[i, id_out]
  if(dt[i]$marker == 'yes' & sum(var.i) != 0) {
    dt[i, (var.col[var.i]) := dt[i, id_new]]
  }
}

这可以与任意数量的列一起使用,并适用于基本 R:

cols <- c("var1", "var2", "var3")

for(j in 1:length(cols)) {
  var <- cols[j]
  for(i in 1:nrow(data_start)){
    if(i > 1) {
      data_start[i, var] <- data_start[i-1, var]
    }
    if(data_start[i, "marker"] == "yes" & data_start[i, var] == data_start[i,"id_out"]) {
      data_start[i,var] <- data_start[i, "id_new"]
    } 
  }
}