解析 HTSQL 时处理语法歧义
Dealing with grammar ambiguity while parsing HTSQL
我正在编写一个语法来解析 HTSQL 语法,并且一直在处理如何处理段和除运算符的 /
字符的重用问题。 described grammar isn't terribly formal, so I've been following the exact output of the Python implementation, which from a cursory glance seems to be a handwritten parser, rather than using a parser generator - for reference the parser generator I'm currently using is CL-YACC
with CL-LEX
. (FWIW the full thing is here,虽然可能有点过时了。)
我遇到的一个歧义是由于 "/1"
被解析为 '(:COLLECT (:INTEGER "1"))'
,而 "/1/2"
被解析为 '(:COLLECT (:OPERATOR / (:INTEGER "1") (:INTEGER "2")))'
,即一个是段分隔符,另一个是除法; "/1//2"
又是 '(:COLLECT (:OPERATOR / (:INTEGER "1") (:COLLECT (:INTEGER "2"))))'
.
问题是,如何在语法规范中处理这个问题而不求助于切换到手动解析器?切换到不同的解析器生成器 class(而不是 LALR(1))会有帮助吗?
到目前为止,我已经尝试了不同的语法变体,但是整个语法的优先级是固定的这一事实也干扰了对斜杠的两种解释。我尝试的另一种方法是在词法分析器中消除歧义,即以不同方式处理第一个斜杠(在每个 "group" 中)并返回不同的符号,例如DIV
- 但是我找不到一个好的规则,并且仅仅通过查看词法结构就怀疑它是否存在。
最后,我很想通过完全偏离给定的解析器来解决这个问题,以使我的生活更轻松。您是否认为这更可取,因为具有可预测的语法更容易理解?
图表 1,用于检查解析树的 Python 脚本:
import htsql
application = htsql.HTSQL("sqlite:///htsql_demo.sqlite")
global y
y = None
def p(string):
global y
with application:
y = htsql.core.syn.parse.parse(string)
return y
def l(name):
result = []
for c in name:
if c.isupper() and result:
result.append("-")
result.append(c)
return "".join(result)
def keyword(name):
return ":{}".format(name.upper())
def n(expression):
name = expression.__class__.__name__
name = name[:name.find("Syntax")]
return keyword(l(name))
def t(expression):
arguments = [n(expression)]
d = expression.__dict__
if "identifier" in d:
arguments.append(t(expression.identifier))
if "text" in d:
arguments.append("\"{}\"".format(expression.text))
if "symbol" in d:
if not isinstance(expression, (htsql.core.syn.syntax.ProjectSyntax, htsql.core.syn.syntax.FilterSyntax, htsql.core.syn.syntax.CollectSyntax, htsql.core.syn.syntax.DetachSyntax)):
arguments.append(expression.symbol)
if "arm" in d:
arguments.append(t(expression.arm))
if "larm" in d:
arguments.append(t(expression.larm))
if "rarm" in d:
arguments.append(t(expression.rarm))
if "arms" in d:
arguments.extend(t(x) for x in expression.arms)
if "rarms" in d:
arguments.extend(t(x) for x in expression.rarms)
return "({})".format(" ".join(arguments))
# t(p("/school"))
# '(:COLLECT (:IDENTIFIER "school"))
# t(p("/'school'"))
# '(:COLLECT (:STRING "school"))
图表 2,我当前的解析器没有正确处理此问题:
(defpackage #:cl-htsql
(:use #:cl #:alexandria #:cl-lex #:yacc)
(:import-from #:arnesi #:with-collector))
(eval-when (:compile-toplevel :load-toplevel :execute)
(defun maybe-intern (name &optional (package NIL package-p))
"If NAME is a SYMBOL, return it, otherwise INTERN it."
(cond
((symbolp name)
name)
(package-p
(intern name package))
(T
(intern name))))
(defmacro define-lexer (name &body patterns)
"Shortcut for DEFINE-STRING-LEXER."
`(define-string-lexer ,name
,@(mapcar
(lambda (pattern)
(etypecase pattern
((or symbol string)
(let ((symbol (maybe-intern pattern))
(pattern (string pattern)))
`(,pattern (return (values ',symbol ',symbol)))))
(list
(destructuring-bind (pattern &optional symbol value) pattern
(let* ((symbol (or symbol (intern pattern)))
(value (or value symbol)))
(etypecase symbol
(list
`(,pattern ,symbol))
(symbol
`(,pattern (return (values ',symbol ',value))))))))))
patterns))))
;; parser are results are to be treated immutable
(define-lexer string-lexer
/
("\|" \|)
("\&" &)
<=
>=
==
=
!==
!=
!~
!
~
<
>
@
("\?" ?)
("\." \.)
("\(" \()
("\)" \))
("\+" +)
-
("\*" *)
\:
("-?0|[1-9][0-9]*(\.[0-9]*)?([eE][+-]?[0-9]+)?"
(return (cond
((find #\e $@)
(values 'float $@))
((find #\. $@)
(values 'decimal $@))
(T
(values 'integer $@)))))
("([^\"\.\?~\'=<>\(\)@\|\&/:])+" (return (values 'name $@)))
("\'([^\\']|\.)*?\'" (return (values 'string (string-trim "\'" $@))))
("\"([^\\"]|\.)*?\"" (return (values 'string (string-trim "\"" $@)))))
(define-parser *expression-parser*
(:muffle-conflicts (44 0))
(:start-symbol query)
(:terminals (|\|| #+(or)div & ! |.| ? / = != !== !~ ~ < > == <= >= \( \) + - * @ name integer decimal float string))
(:precedence ((:left @) (:left ~) (:left |.|) (:left + -) (:left * div) (:left = != == !== ~ !~ < <= > >=) (:left !) (:left &) (:left |\||) (:left ?) (:left /)))
(query
segment)
(segment
(/ segment (lambda (x y) (declare (ignore x)) (if (eq y :skip) '(:skip) `(:collect ,y))))
skip
group)
(skip
((constantly :skip)))
(group
(\( segment \) (lambda (x y z) (declare (ignore x z)) `(:group ,y)))
sieve)
(sieve
(segment ? segment (lambda (x y z) (declare (ignore y)) `(:filter ,x ,z)))
or)
(or
(segment |\|| segment (lambda (x y z) `(:operator ,y ,x ,z)))
and)
(and
(segment & segment (lambda (x y z) `(:operator ,y ,x ,z)))
not)
(not
(! segment (lambda (x y) `(:prefix ,x ,y)))
comparison)
(comparison
(segment = segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment != segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment ~ segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment !~ segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment == segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment !== segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment < segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment <= segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment > segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment >= segment (lambda (x y z) `(:operator ,y ,x ,z)))
addition)
(addition
(segment + segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment - segment (lambda (x y z) `(:operator ,y ,x ,z)))
multiplication)
(multiplication
(segment * segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment / segment (lambda (x y z) (declare (ignore y)) `(:operator / ,x ,z)))
composition)
(composition
(segment |.| segment (lambda (x y z) (declare (ignore y)) `(:compose ,x ,z)))
attach)
(attach
(segment @ segment (lambda (x y z) (declare (ignore y)) `(:attach ,x ,z)))
detach)
(detach
(@ segment (lambda (x y) (declare (ignore x)) `(:detach ,y)))
term)
(term
(name (lambda (x) `(:identifier ,x)))
(string (lambda (x) `(:string ,x)))
(number (lambda (x) `(:integer ,x)))
(integer (lambda (x) `(:integer ,x)))
(decimal (lambda (x) `(:decimal ,x)))
(float (lambda (x) `(:float ,x)))))
(defun make-lexer-for-source (source)
"Make a lexer for the SOURCE, either a STRING or a STREAM."
(etypecase source
(string (string-lexer source))
(stream
(flet ((ignore (c)
(declare (ignore c))))
(stream-lexer #'read-line #'string-lexer #'ignore #'ignore)))))
(defun lex-source (source)
"Debug helper to lex a SOURCE into a list of tokens."
(let ((lexer (make-lexer-for-source source)))
(loop
for (x y) = (multiple-value-list (funcall lexer))
while x
collect (list x y))))
(define-condition htsql-parse-error (simple-error) ())
(defun translate-yacc-error (error)
(make-condition
'htsql-parse-error
:format-control "Couldn't parse HTSQL query: ~A."
:format-arguments (list error)))
(defun parse-htsql-query (source)
"Parse SOURCE into a syntax tree. The SOURCE may be either a STRING or
a STREAM."
(handler-case
(parse-with-lexer
(make-lexer-for-source source)
*expression-parser*)
(yacc-parse-error (error)
(error (translate-yacc-error error)))))
;; > (parse-htsql-query "/1/")
;; (:OPERATOR / (:COLLECT (:INTEGER "1")) :SKIP)
;; > (parse-htsql-query "/1/2")
;; (:OPERATOR / (:COLLECT (:INTEGER "1")) (:INTEGER "2"))
如果您查看运算符列表,您会发现还有另一种情况,即使用相同的符号作为二元运算符和一元运算符,但优先级不同:一元减号。这在表达式语言中很正常,而 yacc 和大多数 yacc 衍生产品提供了一个解决方案:产生式的显式优先级声明。在 yacc 中,你可以这样写
%token UNARY_MINUS UNARY_SLASH
%left UNARY_SLASH
%left '-' '+'
%left '/' '*'
%left UNARY_MINUS
%%
expr: '/' expr %prec UNARY_SLASH
| expr '*' expr
| expr '/' expr
| expr '+' expr
| expr '-' expr
| '-' expr %prec UNARY_MINUS
我不知道 CL-YACC 是否提供等效的;我在文档中没有找到任何内容。
您没有义务使用优先声明,我什至不相信它们是个好主意。以明确的方式说出你的意思只是稍微复杂一点:
term: ID | NUMBER | ... | '(' expr0 ')'
expr0: '/' expr0
| expr1
expr1: expr1 '+' expr2
| expr1 '-' expr2
| expr2
expr2: expr2 '/' expr3
| expr2 '*' expr3
| expr3
expr3: '-' expr3
| term
以上是明确的,根本不需要优先声明。
(非正式的)HTSQL 语法说 "segment" 运算符的语法是 / T
而不是 / expr
,但我没有看到任何迹象表明 T
可能是。在我看来,T
是一个术语或者可能是一个 lexpr (T := expr
),这使得 1 / 2
不太可能成为候选者。但是,正如你所说,它是非正式的。
我正在编写一个语法来解析 HTSQL 语法,并且一直在处理如何处理段和除运算符的 /
字符的重用问题。 described grammar isn't terribly formal, so I've been following the exact output of the Python implementation, which from a cursory glance seems to be a handwritten parser, rather than using a parser generator - for reference the parser generator I'm currently using is CL-YACC
with CL-LEX
. (FWIW the full thing is here,虽然可能有点过时了。)
我遇到的一个歧义是由于 "/1"
被解析为 '(:COLLECT (:INTEGER "1"))'
,而 "/1/2"
被解析为 '(:COLLECT (:OPERATOR / (:INTEGER "1") (:INTEGER "2")))'
,即一个是段分隔符,另一个是除法; "/1//2"
又是 '(:COLLECT (:OPERATOR / (:INTEGER "1") (:COLLECT (:INTEGER "2"))))'
.
问题是,如何在语法规范中处理这个问题而不求助于切换到手动解析器?切换到不同的解析器生成器 class(而不是 LALR(1))会有帮助吗?
到目前为止,我已经尝试了不同的语法变体,但是整个语法的优先级是固定的这一事实也干扰了对斜杠的两种解释。我尝试的另一种方法是在词法分析器中消除歧义,即以不同方式处理第一个斜杠(在每个 "group" 中)并返回不同的符号,例如DIV
- 但是我找不到一个好的规则,并且仅仅通过查看词法结构就怀疑它是否存在。
最后,我很想通过完全偏离给定的解析器来解决这个问题,以使我的生活更轻松。您是否认为这更可取,因为具有可预测的语法更容易理解?
图表 1,用于检查解析树的 Python 脚本:
import htsql
application = htsql.HTSQL("sqlite:///htsql_demo.sqlite")
global y
y = None
def p(string):
global y
with application:
y = htsql.core.syn.parse.parse(string)
return y
def l(name):
result = []
for c in name:
if c.isupper() and result:
result.append("-")
result.append(c)
return "".join(result)
def keyword(name):
return ":{}".format(name.upper())
def n(expression):
name = expression.__class__.__name__
name = name[:name.find("Syntax")]
return keyword(l(name))
def t(expression):
arguments = [n(expression)]
d = expression.__dict__
if "identifier" in d:
arguments.append(t(expression.identifier))
if "text" in d:
arguments.append("\"{}\"".format(expression.text))
if "symbol" in d:
if not isinstance(expression, (htsql.core.syn.syntax.ProjectSyntax, htsql.core.syn.syntax.FilterSyntax, htsql.core.syn.syntax.CollectSyntax, htsql.core.syn.syntax.DetachSyntax)):
arguments.append(expression.symbol)
if "arm" in d:
arguments.append(t(expression.arm))
if "larm" in d:
arguments.append(t(expression.larm))
if "rarm" in d:
arguments.append(t(expression.rarm))
if "arms" in d:
arguments.extend(t(x) for x in expression.arms)
if "rarms" in d:
arguments.extend(t(x) for x in expression.rarms)
return "({})".format(" ".join(arguments))
# t(p("/school"))
# '(:COLLECT (:IDENTIFIER "school"))
# t(p("/'school'"))
# '(:COLLECT (:STRING "school"))
图表 2,我当前的解析器没有正确处理此问题:
(defpackage #:cl-htsql
(:use #:cl #:alexandria #:cl-lex #:yacc)
(:import-from #:arnesi #:with-collector))
(eval-when (:compile-toplevel :load-toplevel :execute)
(defun maybe-intern (name &optional (package NIL package-p))
"If NAME is a SYMBOL, return it, otherwise INTERN it."
(cond
((symbolp name)
name)
(package-p
(intern name package))
(T
(intern name))))
(defmacro define-lexer (name &body patterns)
"Shortcut for DEFINE-STRING-LEXER."
`(define-string-lexer ,name
,@(mapcar
(lambda (pattern)
(etypecase pattern
((or symbol string)
(let ((symbol (maybe-intern pattern))
(pattern (string pattern)))
`(,pattern (return (values ',symbol ',symbol)))))
(list
(destructuring-bind (pattern &optional symbol value) pattern
(let* ((symbol (or symbol (intern pattern)))
(value (or value symbol)))
(etypecase symbol
(list
`(,pattern ,symbol))
(symbol
`(,pattern (return (values ',symbol ',value))))))))))
patterns))))
;; parser are results are to be treated immutable
(define-lexer string-lexer
/
("\|" \|)
("\&" &)
<=
>=
==
=
!==
!=
!~
!
~
<
>
@
("\?" ?)
("\." \.)
("\(" \()
("\)" \))
("\+" +)
-
("\*" *)
\:
("-?0|[1-9][0-9]*(\.[0-9]*)?([eE][+-]?[0-9]+)?"
(return (cond
((find #\e $@)
(values 'float $@))
((find #\. $@)
(values 'decimal $@))
(T
(values 'integer $@)))))
("([^\"\.\?~\'=<>\(\)@\|\&/:])+" (return (values 'name $@)))
("\'([^\\']|\.)*?\'" (return (values 'string (string-trim "\'" $@))))
("\"([^\\"]|\.)*?\"" (return (values 'string (string-trim "\"" $@)))))
(define-parser *expression-parser*
(:muffle-conflicts (44 0))
(:start-symbol query)
(:terminals (|\|| #+(or)div & ! |.| ? / = != !== !~ ~ < > == <= >= \( \) + - * @ name integer decimal float string))
(:precedence ((:left @) (:left ~) (:left |.|) (:left + -) (:left * div) (:left = != == !== ~ !~ < <= > >=) (:left !) (:left &) (:left |\||) (:left ?) (:left /)))
(query
segment)
(segment
(/ segment (lambda (x y) (declare (ignore x)) (if (eq y :skip) '(:skip) `(:collect ,y))))
skip
group)
(skip
((constantly :skip)))
(group
(\( segment \) (lambda (x y z) (declare (ignore x z)) `(:group ,y)))
sieve)
(sieve
(segment ? segment (lambda (x y z) (declare (ignore y)) `(:filter ,x ,z)))
or)
(or
(segment |\|| segment (lambda (x y z) `(:operator ,y ,x ,z)))
and)
(and
(segment & segment (lambda (x y z) `(:operator ,y ,x ,z)))
not)
(not
(! segment (lambda (x y) `(:prefix ,x ,y)))
comparison)
(comparison
(segment = segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment != segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment ~ segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment !~ segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment == segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment !== segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment < segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment <= segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment > segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment >= segment (lambda (x y z) `(:operator ,y ,x ,z)))
addition)
(addition
(segment + segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment - segment (lambda (x y z) `(:operator ,y ,x ,z)))
multiplication)
(multiplication
(segment * segment (lambda (x y z) `(:operator ,y ,x ,z)))
(segment / segment (lambda (x y z) (declare (ignore y)) `(:operator / ,x ,z)))
composition)
(composition
(segment |.| segment (lambda (x y z) (declare (ignore y)) `(:compose ,x ,z)))
attach)
(attach
(segment @ segment (lambda (x y z) (declare (ignore y)) `(:attach ,x ,z)))
detach)
(detach
(@ segment (lambda (x y) (declare (ignore x)) `(:detach ,y)))
term)
(term
(name (lambda (x) `(:identifier ,x)))
(string (lambda (x) `(:string ,x)))
(number (lambda (x) `(:integer ,x)))
(integer (lambda (x) `(:integer ,x)))
(decimal (lambda (x) `(:decimal ,x)))
(float (lambda (x) `(:float ,x)))))
(defun make-lexer-for-source (source)
"Make a lexer for the SOURCE, either a STRING or a STREAM."
(etypecase source
(string (string-lexer source))
(stream
(flet ((ignore (c)
(declare (ignore c))))
(stream-lexer #'read-line #'string-lexer #'ignore #'ignore)))))
(defun lex-source (source)
"Debug helper to lex a SOURCE into a list of tokens."
(let ((lexer (make-lexer-for-source source)))
(loop
for (x y) = (multiple-value-list (funcall lexer))
while x
collect (list x y))))
(define-condition htsql-parse-error (simple-error) ())
(defun translate-yacc-error (error)
(make-condition
'htsql-parse-error
:format-control "Couldn't parse HTSQL query: ~A."
:format-arguments (list error)))
(defun parse-htsql-query (source)
"Parse SOURCE into a syntax tree. The SOURCE may be either a STRING or
a STREAM."
(handler-case
(parse-with-lexer
(make-lexer-for-source source)
*expression-parser*)
(yacc-parse-error (error)
(error (translate-yacc-error error)))))
;; > (parse-htsql-query "/1/")
;; (:OPERATOR / (:COLLECT (:INTEGER "1")) :SKIP)
;; > (parse-htsql-query "/1/2")
;; (:OPERATOR / (:COLLECT (:INTEGER "1")) (:INTEGER "2"))
如果您查看运算符列表,您会发现还有另一种情况,即使用相同的符号作为二元运算符和一元运算符,但优先级不同:一元减号。这在表达式语言中很正常,而 yacc 和大多数 yacc 衍生产品提供了一个解决方案:产生式的显式优先级声明。在 yacc 中,你可以这样写
%token UNARY_MINUS UNARY_SLASH
%left UNARY_SLASH
%left '-' '+'
%left '/' '*'
%left UNARY_MINUS
%%
expr: '/' expr %prec UNARY_SLASH
| expr '*' expr
| expr '/' expr
| expr '+' expr
| expr '-' expr
| '-' expr %prec UNARY_MINUS
我不知道 CL-YACC 是否提供等效的;我在文档中没有找到任何内容。
您没有义务使用优先声明,我什至不相信它们是个好主意。以明确的方式说出你的意思只是稍微复杂一点:
term: ID | NUMBER | ... | '(' expr0 ')'
expr0: '/' expr0
| expr1
expr1: expr1 '+' expr2
| expr1 '-' expr2
| expr2
expr2: expr2 '/' expr3
| expr2 '*' expr3
| expr3
expr3: '-' expr3
| term
以上是明确的,根本不需要优先声明。
(非正式的)HTSQL 语法说 "segment" 运算符的语法是 / T
而不是 / expr
,但我没有看到任何迹象表明 T
可能是。在我看来,T
是一个术语或者可能是一个 lexpr (T := expr
),这使得 1 / 2
不太可能成为候选者。但是,正如你所说,它是非正式的。