如何根据另一列的 NaN 值在 pandas 数据框中设置值?

How set values in pandas dataframe based on NaN values of another column?

我有一个名为 df 的数据框,原始形状为 (4361, 15)agefm 列的某些值是 NaN。看看:

> df[df.agefm.isnull() == True].agefm.shape
(2282,)

然后我创建新列并将其所有值设置为 0:

df['nevermarr'] = 0

所以我想将 nevermarr 值设置为 1,那么在那一行 agefm 是 Nan:

df[df.agefm.isnull() == True].nevermarr = 1

没有变化:

> df['nevermarr'].sum()
0

我做错了什么?

最好使用numpy.where:

df['nevermarr'] = np.where(df.agefm.isnull(), 1, 0)
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          0
2    6.0          0

或使用loc==True可省略:

df.loc[df.agefm.isnull(), 'nevermarr'] = 1

mask:

df['nevermarr'] = df.nevermarr.mask(df.agefm.isnull(), 1)
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          2
2    6.0          3

样本:

import pandas as pd
import numpy as np

df = pd.DataFrame({'nevermarr':[7,2,3],
                   'agefm':[np.nan,5,6]})

print (df)
   agefm  nevermarr
0    NaN          7
1    5.0          2
2    6.0          3

df.loc[df.agefm.isnull(), 'nevermarr'] = 1
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          2
2    6.0          3