从 EMR 集群主机外部使用 spark-submit

Using spark-submit externally from EMR cluster master

我们在 AWS Elastic MapReduce (EMR) 和 Spark 1.6.1 中有一个 Hadoop 集群 运行ning。登录集群主机并提交 Spark 作业没有问题,但我们希望能够从另一个独立的 EC2 实例提交它们。

另一个 'external' EC2 实例设置了安全组,以允许所有 TCP 流量进出 EMR 实例主实例和从实例。它有直接从 Apache 站点下载的 Spark 二进制安装。

将 /etc/hadoop/conf 文件夹从主实例复制到此实例并相应地设置 $HADOOP_CONF_DIR 后,当尝试提交 SparkPi 示例时,我 运行 遇到以下权限问题:

$ /usr/local/spark/bin/spark-submit --master yarn --deploy-mode client --class org.apache.spark.examples.SparkPi /usr/local/spark/lib/spark-examples-1.6.1-hadoop2.6.0.jar 
16/06/22 13:58:52 INFO spark.SparkContext: Running Spark version 1.6.1
16/06/22 13:58:52 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/06/22 13:58:52 INFO spark.SecurityManager: Changing view acls to: jungd
16/06/22 13:58:52 INFO spark.SecurityManager: Changing modify acls to: jungd
16/06/22 13:58:52 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions:     Set(jungd); users with modify permissions: Set(jungd)
16/06/22 13:58:52 INFO util.Utils: Successfully started service 'sparkDriver' on port 34757.
16/06/22 13:58:52 INFO slf4j.Slf4jLogger: Slf4jLogger started
16/06/22 13:58:52 INFO Remoting: Starting remoting
16/06/22 13:58:53 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@172.31.61.189:39241]
16/06/22 13:58:53 INFO util.Utils: Successfully started service 'sparkDriverActorSystem' on port 39241.
16/06/22 13:58:53 INFO spark.SparkEnv: Registering MapOutputTracker
16/06/22 13:58:53 INFO spark.SparkEnv: Registering BlockManagerMaster
16/06/22 13:58:53 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-300d738e-d7e4-4ae9-9cfe-4e257a05d456
16/06/22 13:58:53 INFO storage.MemoryStore: MemoryStore started with capacity 511.1 MB
16/06/22 13:58:53 INFO spark.SparkEnv: Registering OutputCommitCoordinator
16/06/22 13:58:53 INFO server.Server: jetty-8.y.z-SNAPSHOT
16/06/22 13:58:53 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
16/06/22 13:58:53 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
16/06/22 13:58:53 INFO ui.SparkUI: Started SparkUI at http://172.31.61.189:4040
16/06/22 13:58:53 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-5e332986-ae2a-4bde-9ae4-edb4fac5e1d7/httpd-e475fd1b-c5c8-4f31-9699-be89fff4a69c
16/06/22 13:58:53 INFO spark.HttpServer: Starting HTTP Server
16/06/22 13:58:53 INFO server.Server: jetty-8.y.z-SNAPSHOT
16/06/22 13:58:53 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:43525
16/06/22 13:58:53 INFO util.Utils: Successfully started service 'HTTP file server' on port 43525.
16/06/22 13:58:53 INFO spark.SparkContext: Added JAR file:/usr/local/spark/lib/spark-examples-1.6.1-hadoop2.6.0.jar at http://172.31.61.189:43525/jars/spark-examples-1.6.1-hadoop2.6.0.jar with timestamp 1466603933454
16/06/22 13:58:53 INFO client.RMProxy: Connecting to ResourceManager at ip-172-31-60-166.ec2.internal/172.31.60.166:8032
16/06/22 13:58:53 INFO yarn.Client: Requesting a new application from cluster with 2 NodeManagers
16/06/22 13:58:53 INFO yarn.Client: Verifying our application has not requested more than the maximum memory capability of the cluster (11520 MB per container)
16/06/22 13:58:53 INFO yarn.Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
16/06/22 13:58:53 INFO yarn.Client: Setting up container launch context for our AM
16/06/22 13:58:53 INFO yarn.Client: Setting up the launch environment for our AM container
16/06/22 13:58:53 INFO yarn.Client: Preparing resources for our AM container
16/06/22 13:58:54 ERROR spark.SparkContext: Error initializing SparkContext.
org.apache.hadoop.security.AccessControlException: Permission denied: user=jungd, access=WRITE, inode="/user/jungd/.sparkStaging/application_1466437015320_0014":hdfs:hadoop:drwxr-xr-x
at         org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:319)
at     org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:292)
at     org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:213)

使用集群部署模式提交没有区别。有问题的用户是 'external' EC2 实例(我们有多个开发者帐户)上的本地用户,该用户在集群的主节点或从节点上不存在(甚至在本地,用户主目录位于 /home,不是 /user).

我不知道发生了什么事。非常感谢任何帮助。

运行 从主机以外的机器进行 spark-submit 需要一些东西:

  • 需要在HDFS中创建与提交用户匹配的用户
    • 例如,使用 Hue 控制台,或者直接在 master
    • 上使用 hadoop fs 命令行工具创建 /user/NAME 文件夹并设置权限
  • 外部机器和集群主从之间的所有必要端口必须在两个方向上打开(或者,所有 TPC 流量)。
    • 如果在AWS EC2 EMR环境中,机器的安全组,主从可以明确允许来自其他组。

可能还需要在主服务器上创建用户作为 Linux 帐户。