类型 class 中的多个类型参数

Multiple type parameters in type class

我想用类型class设计转换界面,代码如下:

case class Kilograms(value: Double)

case class Pounds(value: Double)

trait Convert[T, U] {
  def convert(input: T): U
}

object Convert {
  def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]
  def covert[T, U](input: T)(implicit c: Convert[T, U]): U = c.convert(input)

  implicit object kilogramsToPounds extends Convert[Kilograms, Pounds] {
      override def convert(input: Kilograms): Pounds = Pounds(input.value *   2.20462)
    }

  implicit object poundsToKilograms extends Convert[Pounds, Kilograms] {
      override def convert(input: Pounds): Kilograms = Kilograms(input.value / 2.20462)
    }
}

但是编译错误:

Error: wrong number of type arguments for A$A95.this.Convert, should be 2
 def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]

 Error: could not find implicit value for parameter e: A$A95.this.Convert[T,U]
  def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]

Error: not enough arguments for method implicitly: (implicit e:   A$A95.this.Convert[T,U])A$A95.this.Convert[T,U].
Unspecified value parameter e.
   def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]

如果我把def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]改成def apply[T, U](implicit c: Convert[T, U]): Convert[T, U] = c,没有编译错误!!!

我想知道这是怎么回事? 另外,我查了一些资料,context bound is restricted with single type parameter(?) 如果我想实现多类型参数类型class,我该怎么办?

上下文绑定语法 T : U 仅适用于只有 一个类型参数 S 的类型 U(符合 T).

这是有效的,因为您手动声明了 Convert[T, U]:

的隐式
def covert[T, U](input: T)(implicit c: Convert[T, U]): U = c.convert(input)

以下是无效的,因为编译器将上下文边界去糖化,分别为 Convert[T]Convert[U],这没有意义。

 def apply[T:Convert, U:Convert] = implicitly[Convert[T,U]]

(尝试脱糖)

 def apply[T, U](implicit ev1: Convert[T], ev2: Convert[U]) = ...

参见 SLS 7.4 - Context and View Bounds:

A type parameter A of a method or non-trait class may also have one or more context bounds A : T. In this case the type parameter may be instantiated to any type S for which evidence exists at the instantiation point that S satisfies the bound T. Such evidence consists of an implicit value with type T[S].