joblib 的中间结果

Intermediate results from joblib

我正在尝试学习 joblib 模块以替代 python 中的内置 multiprocessing 模块。我习惯于在可迭代对象上使用 multiprocessing.imap 到 运行 函数并返回结果。在这个最小的工作示例中,我无法弄清楚如何使用 joblib:

import joblib, time

def hello(n):
    time.sleep(1)
    print "Inside function", n
    return n

with joblib.Parallel(n_jobs=1) as MP:

    func = joblib.delayed(hello)
    for x in MP(func(x) for x in range(3)):
        print "Outside function", x

打印:

Inside function 0
Inside function 1
Inside function 2
Outside function 0
Outside function 1
Outside function 2

我想看看输出:

Inside function 0
Outside function 0
Inside function 1
Outside function 1
Inside function 2
Outside function 2

或类似的东西,表明可迭代 MP(...) 不等待所有结果完成。对于更长的演示更改 n_jobs=-1range(100).

>>> import joblib, time
>>> 
>>> def hello(n):
...     time.sleep(1)
...     print "Inside function", n
...     return n
... 
>>> with joblib.Parallel(n_jobs=1) as MP:
...     func = joblib.delayed(hello)
...     res = MP(func(x) for x in range(3))  # This is not an iterator.
... 
Inside function 0
Inside function 1
Inside function 2
>>> type(res)
<type 'list'>

你处理的不是发电机。因此,您不应期望它会为您提供中间结果。我在文档中阅读的内容似乎没有提及(或者我没有阅读相关部分)。

欢迎您阅读文档并搜索 "intermediate" 结果主题: https://pythonhosted.org/joblib/search.html?q=intermediate&check_keywords=yes&area=default

我的理解是每次调用parallel都是一个barrier,为了得到中间结果,需要分块处理:

>>> import joblib, time
>>> 
>>> def hello(n):
...     time.sleep(1)
...     print "Inside function", n
...     return n
... 
>>> with joblib.Parallel(n_jobs=1) as MP:
...     func = joblib.delayed(hello)
...     for chunk in range(3):
...         x = MP(func(y) for y in [chunk])
...         print "Outside function", x
... 
Inside function 0
Outside function [0]
Inside function 1
Outside function [1]
Inside function 2
Outside function [2]
>>> 

如果你想获得技术,有一个回调机制,但它专门用于进度报告(BatchCompletionCallBack),但你需要更多涉及的代码更改。

从 joblib 获得即时结果,例如:

from joblib._parallel_backends import MultiprocessingBackend

class ImmediateResult_Backend(MultiprocessingBackend):
    def callback(self, result):
        print("\tImmediateResult function %s" % (result))

    # Overload apply_async and set callback=self.callback
    def apply_async(self, func, callback=None):
        applyResult = super().apply_async(func, self.callback)
        return applyResult

joblib.register_parallel_backend('custom', ImmediateResult_Backend, make_default=True)

with joblib.Parallel(n_jobs=2) as parallel:
    func = parallel(delayed(hello)(y) for y in range(3))
    for f in func:
        print("Outside function %s" % (f))

输出:
注意:我在def hello(...)中使用了time.sleep(n * random.randrange(1,5)),因此processes变得不同了。

Inside function 0
Inside function 1
ImmediateResult function [0]
Inside function 2
ImmediateResult function [1]
ImmediateResult function [2]
Outside function 0
Outside function 1
Outside function 2

测试 Python:3.4.2 - joblib:0.11

stovfl 的回答很优雅,但它只适用于第一批派出的。在示例中,它之所以有效,是因为工人们从不挨饿 (n_tasks < 2*n_jobs)。要使这种方法起作用,还必须调用最初传递给 apply_async 的回调。这是 BatchCompletionCallBack 的实例,它安排下一批要处理的任务。

一种可能的解决方案是将任意回调包装在一个可调用对象中,像这样(在 joblib==0.11,py36 中测试):

from joblib._parallel_backends import MultiprocessingBackend
from joblib import register_parallel_backend, parallel_backend
from joblib import Parallel, delayed
import time

class MultiCallback:
    def __init__(self, *callbacks):
        self.callbacks = [cb for cb in callbacks if cb]

    def __call__(self, out):
        for cb in self.callbacks:
            cb(out)

class ImmediateResultBackend(MultiprocessingBackend):
    def callback(self, result):
        print("\tImmediateResult function %s" % result)

    def apply_async(self, func, callback=None):
        cbs = MultiCallback(callback, self.callback)
        return super().apply_async(func, cbs)

register_parallel_backend('custom', ImmediateResultBackend)

def hello(n):
    time.sleep(1)
    print("Inside function", n)
    return n

with parallel_backend('custom'):
    res = Parallel(n_jobs=2)(delayed(hello)(y) for y in range(6))

输出

Inside function 0
Inside function 1
    ImmediateResult function [0]
    ImmediateResult function [1]
Inside function 3
Inside function 2
    ImmediateResult function [3]
    ImmediateResult function [2]
Inside function 4
    ImmediateResult function [4]
Inside function 5
    ImmediateResult function [5]