TensorFlow、TensorBoard:未找到标量数据

TensorFlow, TensorBoard: No scalar data was found

我正在研究如何操作 tensorboard。

我在这里看了演示:

https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py

它 运行 在我的笔记本电脑上运行良好。

其中大部分对我来说都很有意义。

于是,我写了一个简单的tensorflow demo:

# tensorboard_demo1.py

import tensorflow as tf

sess = tf.Session()

with tf.name_scope('scope1'):
  y1 = tf.constant(22.9) * 1.1
  tf.scalar_summary('y1 scalar_summary', y1)

train_writer = tf.train.SummaryWriter('/tmp/tb1',sess.graph)

print('Result:')
# Now I should run the compute graph:
print(sess.run(y1))

train_writer.close()

# done

好像运行还行吧

接下来我运行一个简单的shell命令:

tensorboard --log /tmp/tb1

它告诉我浏览 0.0.0.0:6006

我做到了。

网页告诉我:

未找到标量数据。

我如何增强我的演示,以便它记录张量板将显示给我的标量摘要?

您必须调用 train_writer.add_summary() to add some data to the log. For example, one common pattern is to use tf.merge_all_summaries() 来创建一个张量,该张量隐含地合并来自当前图中创建的所有摘要的信息:

# Creates a TensorFlow tensor that includes information from all summaries
# defined in the current graph.
summary_t = tf.merge_all_summaries()

# Computes the current value of all summaries in the current graph.
summary_val = sess.run(summary_t)

# Writes the summary to the log.
train_writer.add_summary(summary_val)