CUDA:指向中间共享内存位置意外行为的指针

CUDA: Pointer to intermediate shared memory location unexpected behavior

我正在启动一个包含 512 个线程的线性块的内核。与每个线程关联的是六个双精度值(两个 3 元素向量),我想将它们存储在共享内存中,总共 512*6*8=24576 字节。我想创建指向 shared 的中间元素的指针,以按如下方式排列所有向量:

__global__ void my_kernel(double *global_data) {
    extern __shared__ double shr[];

    id = threadIdx.x;
    double *X = &shr[id*3];
    double *Y = &shr[(id+1)*3];
    // Some arithmetic to set X[0:3] ad Y[0:3]
    // Now I have a small for loop to compute something for each thread       

    for (int i = 0; i < 3; i++) {
        for (int j=0; j < 3; j++) {
            // Some computations involving the X and Y vectors
    }
}

我的问题是使用循环索引访问 X 和 Y 中的值。我无法解释第一次循环迭代期间的以下行为:

(cuda-gdb) cuda thread
thread (0,0,0)
(cuda-gdb) p shr[0]
 = 0.62293193093894383
(cuda-gdb) p &shr[0]
 = (@shared double *) 0x0
(cuda-gdb) p X[0]
 = 0.62293193093894383 
(cuda-gdb) p &X[0]
 = (@generic double *) 0x1000000
(cuda-gdb) p X
 = (@generic double * @register) 0x1000000 

我觉得这很正常。但是然后:

(cuda-gdb) p i == 0
 = true
(cuda-gdb) p X[i]
Error: Failed to read global memory at address 0x0 on device 0 sm 0 warp 0 lane 0 (error=7).

为什么当 i == 0 时我可以访问 X[0] 但不能访问 X[i]?

编辑:这是一个完整的工作示例,展示了我的问题:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
from pycuda.compiler import SourceModule
from math import pi

mydat = np.arange(12).astype(np.float64)
mydat_gpu = gpuarray.to_gpu(mydat)

mod = SourceModule("""
__global__ void my_kernel(double *mydat) {
        extern __shared__ double shr[];
        int id = threadIdx.x;

        double *X = &shr[(id * 6)];
        double *Y = &shr[(id * 6) + 3];

        X[0] = mydat[0];
        X[1] = mydat[1];        
        X[2] = mydat[2];        
        Y[0] = mydat[3];
        Y[1] = mydat[4];
        Y[2] = mydat[5];


        __syncthreads();        

        double result;

        for (int i = 0; i < 3; i++) {
                result += X[i] + Y[i];
        }
}
""")

my_kernel = mod.get_function("my_kernel")
blk = (1,1,1)
grd = (1,1,1)

my_kernel(mydat_gpu, grid=grd, block=blk, shared=(8*6))

此时我启动调试会话:

cuda-gdb --args python -m pycuda.debug minimal_working_example.py

(cuda-gdb) b my_kernel
Function "my_kernel" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (my_kernel) pending.
(cuda-gdb) run

[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0, lane 0]

Breakpoint 1, my_kernel(double * @generic)<<<(1,1,1),(1,1,1)>>> (mydat=0x13034a0000)
at kernel.cu:5
5       int id = threadIdx.x;
(cuda-gdb) n
7       double *X = &shr[(id * 6)];
(cuda-gdb) p id
 = 0
(cuda-gdb) p id * 6
 = 0
(cuda-gdb) n
8       double *Y = &shr[(id * 6) + 3];
(cuda-gdb) p (id * 6) + 3
 = 3
(cuda-gdb) n
10      X[0] = mydat[0];
(cuda-gdb) n
11      X[1] = mydat[1];    
(cuda-gdb) n
12      X[2] = mydat[2];    
(cuda-gdb) n
13      Y[0] = mydat[3];
(cuda-gdb) n 
14      Y[1] = mydat[4];
(cuda-gdb) n
15      Y[2] = mydat[5];
(cuda-gdb) p X
 = (@generic double * @register) 0x1000000
(cuda-gdb) p X[0]
 = 0
(cuda-gdb) p X[1]
 = 1
(cuda-gdb) p Y[0]
 = 3
(cuda-gdb) p Y[1]
 = 4
(cuda-gdb) n
18      __syncthreads();    
(cuda-gdb) n
22      for (int i = 0; i < 3; i++) {
(cuda-gdb) n
23          result += X[i] + Y[i];
(cuda-gdb) p i
 = 0
(cuda-gdb) p X[0] 
 = 0
(cuda-gdb) p X[i]
Error: Failed to read global memory at address 0x0 on device 0 sm 0 warp 0 lane 0 (error=7).

这里发生的一切是您正在逐步执行实际上尚未编译到 运行 内核中的源指令。您尝试检查的变量已经超出范围,调试器无法再向您显示它们。

这是由于设备代码编译器的积极优化所致。在您的示例中,求和循环不会产生影响写入全局或共享内存的输出,因此编译器只是将其消除。在单步执行优化代码时,源代码调试器尽力显示源代码和执行之间的 1:1 关系,但这并不总是可能的,这就是您看到的有点令人困惑的结果。

您可以通过使用 nvcc 将内核代码编译为 PTX 并检查代码来自己确认这一点:

    // .globl   _Z9my_kernelPd
.visible .entry _Z9my_kernelPd(
    .param .u64 _Z9my_kernelPd_param_0
)
{
    .reg .b32   %r<3>;
    .reg .f64   %fd<7>;
    .reg .b64   %rd<6>;


    ld.param.u64    %rd1, [_Z9my_kernelPd_param_0];
    cvta.to.global.u64  %rd2, %rd1;
    mov.u32     %r1, %tid.x;
    mul.lo.s32  %r2, %r1, 6;
    mul.wide.s32    %rd3, %r2, 8;
    mov.u64     %rd4, shr;
    add.s64     %rd5, %rd4, %rd3;
    ld.global.nc.f64    %fd1, [%rd2];
    ld.global.nc.f64    %fd2, [%rd2+8];
    ld.global.nc.f64    %fd3, [%rd2+16];
    ld.global.nc.f64    %fd4, [%rd2+24];
    ld.global.nc.f64    %fd5, [%rd2+32];
    ld.global.nc.f64    %fd6, [%rd2+40];
    st.shared.f64   [%rd5], %fd1;
    st.shared.f64   [%rd5+8], %fd2;
    st.shared.f64   [%rd5+16], %fd3;
    st.shared.f64   [%rd5+24], %fd4;
    st.shared.f64   [%rd5+32], %fd5;
    st.shared.f64   [%rd5+40], %fd6;
    bar.sync    0;
    ret;
}

可以看到最后一条PTX指令是bar,这是__syncthreads()设备函数发出的指令。求和循环不存在。

如果我这样修改你的源代码:

__global__ void my_kernel2(double *mydat, double *out) {
    extern __shared__ double shr[];
    int id = threadIdx.x;

    double *X = &shr[(id * 6)];
    double *Y = &shr[(id * 6) + 3];

    X[0] = mydat[0];
    X[1] = mydat[1];        
    X[2] = mydat[2];        
    Y[0] = mydat[3];
    Y[1] = mydat[4];
    Y[2] = mydat[5];


    __syncthreads();        

    double result;

    for (int i = 0; i < 3; i++) {
        result += X[i] + Y[i];
    }
    *out = result;
}

因此 result 现在存储到全局内存并将其编译为 PTX:

.visible .entry _Z10my_kernel2PdS_(
    .param .u64 _Z10my_kernel2PdS__param_0,
    .param .u64 _Z10my_kernel2PdS__param_1
)
{
    .reg .b32   %r<3>;
    .reg .f64   %fd<20>;
    .reg .b64   %rd<8>;


    ld.param.u64    %rd3, [_Z10my_kernel2PdS__param_0];
    ld.param.u64    %rd2, [_Z10my_kernel2PdS__param_1];
    cvta.to.global.u64  %rd4, %rd3;
    mov.u32     %r1, %tid.x;
    mul.lo.s32  %r2, %r1, 6;
    mul.wide.s32    %rd5, %r2, 8;
    mov.u64     %rd6, shr;
    add.s64     %rd1, %rd6, %rd5;
    ld.global.f64   %fd1, [%rd4];
    ld.global.f64   %fd2, [%rd4+8];
    ld.global.f64   %fd3, [%rd4+16];
    ld.global.f64   %fd4, [%rd4+24];
    ld.global.f64   %fd5, [%rd4+32];
    ld.global.f64   %fd6, [%rd4+40];
    st.shared.f64   [%rd1], %fd1;
    st.shared.f64   [%rd1+8], %fd2;
    st.shared.f64   [%rd1+16], %fd3;
    st.shared.f64   [%rd1+24], %fd4;
    st.shared.f64   [%rd1+32], %fd5;
    st.shared.f64   [%rd1+40], %fd6;
    bar.sync    0;
    ld.shared.f64   %fd7, [%rd1];
    ld.shared.f64   %fd8, [%rd1+24];
    add.f64     %fd9, %fd7, %fd8;
    add.f64     %fd10, %fd9, %fd11;
    ld.shared.f64   %fd12, [%rd1+8];
    ld.shared.f64   %fd13, [%rd1+32];
    add.f64     %fd14, %fd12, %fd13;
    add.f64     %fd15, %fd10, %fd14;
    ld.shared.f64   %fd16, [%rd1+16];
    ld.shared.f64   %fd17, [%rd1+40];
    add.f64     %fd18, %fd16, %fd17;
    add.f64     %fd19, %fd15, %fd18;
    cvta.to.global.u64  %rd7, %rd2;
    st.global.f64   [%rd7], %fd19;
    ret;
}

您可以看到 (urolled) 循环现在出现在 PTX 中,如果您尝试它,调试器的行为应该更接近您的预期。

正如评论中所建议的那样,由于编译器优化会导致复杂性,因此您不应该花时间尝试分析任何不更改块或全局状态的代码。