Octave:如何对这些 FOR 循环进行矢量化?

Octave: how can these FOR loops be vectorized?

我正在编写一个 Octave 脚本来计算欧式期权的价格。

第一部分使用Monte Carlo模拟n个时间段内的标的资产价格。这被重复了 nIter 次。

Octave 使得设置初始矩阵变得非常容易。但是我还没找到用向量化的方式完成任务的方法,避免FOR循环:

%% Octave simplifies creation of 'e', 'dlns', and 'Prices'
e = norminv(rand(nIter,n));
dlns = cat(2, ones(nIter,1), exp((adj_r+0.5*sigma^2)*dt+sigma*e.*sqrt(dt)));
Prices = zeros(nIter, n+1);

for i = 1:nIter              % IS THERE A WAY TO VECTORIZE THESE FOR LOOPS?
  for j = 1:n+1
    if j == 1
      Prices(i,j)=S0;
    else
      Prices(i,j)=Prices(i,j-1)*dlns(i,j);
    end
  endfor
endfor

请注意,n 中的价格等于 n-1 中的价格乘以一个因子,因此以下内容不起作用...

Prices(i,:) = S0 * dlns(i,:)

...因为它需要 S0 并将其乘以所有因子,产生与预期随机游走不同的结果。

由于迭代之间依赖于获取每个新列相对于前一列的结果,因此您似乎至少需要一个循环,但是以矢量化方式在列中执行所有操作,这可能给你加速。两个嵌套循环的 向量化 替换看起来像这样 -

Prices(:,1)=S0;
for j = 2:n+1
    Prices(:,j) = Prices(:,j-1).*dlns(:,j);
endfor

我刚刚想到可以使用 cumprod 来处理依赖关系,这让我们 cumulative product 这基本上是在这里完成的,因此会导致无循环解决方案!这是实现 -

Prices = [repmat(S0,nIter,1) cumprod(dlns(:,2:end),2)*S0]

MATLAB 基准测试

基准代码-

%// Parameters as told by OP and then create the inputs
nIter= 100000;
n = 100;
adj_r = 0.03;
sigma = 0.2;
dt = 1/n;
S0 = 60;
e = norminv(rand(nIter,n));
dlns = cat(2, ones(nIter,1), exp((adj_r+0.5*sigma^2)*dt+sigma*e.*sqrt(dt)));

disp('-------------------------------------- With Original Approach')
tic
Prices = zeros(nIter, n+1);
for i = 1:nIter
    for j = 1:n+1
        if j == 1
            Prices(i,j)=S0;
        else
            Prices(i,j)=Prices(i,j-1)*dlns(i,j);
        end
    end
end
toc, clear Prices

disp('-------------------------------------- With Proposed Approach - I')
tic
Prices2(nIter, n+1)=0; %// faster pre-allocation scheme
Prices2(:,1)=S0;
for j = 2:n+1
    Prices2(:,j)=Prices2(:,j-1).*dlns(:,j);
end
toc, clear Prices2

disp('-------------------------------------- With Proposed Approach - II')
tic
Prices3 = [repmat(S0,nIter,1) cumprod(dlns(:,2:end),2)*S0];
toc, clear Prices3

运行时结果 -

-------------------------------------- With Original Approach
Elapsed time is 0.259054 seconds.
-------------------------------------- With Proposed Approach - I
Elapsed time is 0.020566 seconds.
-------------------------------------- With Proposed Approach - II
Elapsed time is 0.067292 seconds.

现在,运行时确实表明第一个提议的方法可能更适合这里!