使用 ggplot2 生成 "fuzzy" RD 图

Producing a "fuzzy" RD plot with ggplot2

我的问题与 this 类似,但那里的答案对我不起作用。基本上,我正在尝试使用 "fuzzy" 设计生成回归不连续图,该设计使用治疗组和对照组的所有数据,但仅在治疗组和对照组的 "range" 内绘制回归线组。

下面,我模拟了一些数据并生成了带有基本图形的模糊 RD 图。我希望用 ggplot2 复制这个情节。请注意,其中最重要的部分是浅蓝色回归线使用所有蓝色点进行拟合,而桃色回归线使用所有红色点进行拟合,尽管仅绘制在个人预期的范围内接受治疗。那是我很难在 ggplot 中复制的部分。

我想转到 ggplot,因为我想使用分面在参与者嵌套的各个单元中生成相同的图。在下面的代码中,我展示了一个使用 geom_smooth 的非示例。当组内没有模糊性时,它可以正常工作,否则就会失败。如果我可以将 geom_smooth 限制在特定范围内,我想我已经确定了。感谢您提供任何帮助。

模拟数据

library(MASS)
mu <- c(0, 0)
sigma <- matrix(c(1, 0.7, 0.7, 1), ncol = 2)

set.seed(100)
d <- as.data.frame(mvrnorm(1e3, mu, sigma))

# Create treatment variable
d$treat <- ifelse(d$V1 <= 0, 1, 0)

# Introduce fuzziness
d$treat[d$treat == 1][sample(100)] <- 0
d$treat[d$treat == 0][sample(100)] <- 1

# Treatment effect
d$V2[d$treat == 1] <- d$V2[d$treat == 1] + 0.5

# Add grouping factor
d$group <- gl(9, 1e3/9)

用基数生成回归不连续图

library(RColorBrewer)
pal <- brewer.pal(5, "RdBu")

color <- d$treat
color[color == 0] <- pal[1]
color[color == 1] <- pal[5]

plot(V2 ~ V1, 
    data = d, 
    col = color,
    bty = "n")
abline(v = 0, col = "gray", lwd = 3, lty = 2)

# Fit model
m <- lm(V2 ~ V1 + treat, data = d)

# predicted achievement for treatment group
pred_treat <- predict(m, 
            newdata = data.frame(V1 = seq(-3, 0, 0.1), 
                                 treat = 1))
# predicted achievement for control group
pred_no_treat <- predict(m, 
            newdata = data.frame(V1 = seq(0, 4, 0.1), 
                                 treat = 0))

# Add predicted achievement lines
lines(seq(-3, 0, 0.1), pred_treat, col = pal[4], lwd = 3)
lines(seq(0, 4, 0.1), pred_no_treat, col = pal[2], lwd = 3)

# Add legend
legend("bottomright", 
    legend = c("Treatment", "Control"),
    lty = 1,
    lwd = 2,
    col = c(pal[4], pal[2]),
    box.lwd = 0)

非 ggplot 示例

d$treat <- factor(d$treat, labels = c("Control", "Treatment"))

library(ggplot2)
ggplot(d, aes(V1, V2, group = treat)) + 
    geom_point(aes(color = treat)) +
    geom_smooth(method = "lm", aes(color = treat)) +
    facet_wrap(~group)

注意第 1 组和第 2 组的回归线延伸超过治疗范围。

geom_smooth 制作线条可能有更优雅的方法,但它可以与 geom_segment 一起破解。如果愿意,请在绘图调用之外输入 data.frames。

ggplot(d, aes(x = V1, y = V2, color = factor(treat, labels = c('Control', 'Treatment')))) + 
    geom_point(shape = 21) + 
    scale_color_brewer(NULL, type = 'qual', palette = 6) + 
    geom_vline(aes(xintercept = 0), color = 'grey', size = 1, linetype = 'dashed') + 
    geom_segment(data = data.frame(t(predict(m, data.frame(V1 = c(-3, 0), treat = 1)))), 
                 aes(x = -3, xend = 0, y = X1, yend = X2), color = pal[4], size = 1) + 
    geom_segment(data = data.frame(t(predict(m, data.frame(V1 = c(0, 4), treat = 0)))), 
                 aes(x = 0, xend = 4, y = X1, yend = X2), color = pal[2], size = 1)

另一种选择是geom_path:

df <- data.frame(V1 = c(-3, 0, 0, 4), treat = c(1, 1, 0, 0))
df <- cbind(df, V2 = predict(m, df))

ggplot(d, aes(x = V1, y = V2, color = factor(treat, labels = c('Control', 'Treatment')))) + 
    geom_point(shape = 21) + 
    geom_vline(aes(xintercept = 0), color = 'grey', size = 1, linetype = 'dashed') + 
    scale_color_brewer(NULL, type = 'qual', palette = 6) + 
    geom_path(data = df, size = 1)


对于带有构面的编辑,如果我正确理解您想要的内容,您可以使用 lapply 为每个组计算模型并为每个组进行预测。在这里,我将 dplyr::bind_rows 而不是 do.call(rbind, ...) 重新组合为 .id 参数,以从列表元素名称中插入组编号,尽管还有其他方法可以做同样的事情。

df <- data.frame(V1 = c(-3, 0, 0, 4), treat = c('Treatment', 'Treatment', 'Control', 'Control'))
m_list <- lapply(split(d, d$group), function(x){lm(V2 ~ V1 + treat, data = x)})
df <- dplyr::bind_rows(lapply(m_list, function(x){cbind(df, V2 = predict(x, df))}), .id = 'group')

ggplot(d, aes(x = V1, y = V2, color = treat)) + 
    geom_point(shape = 21) + 
    geom_vline(aes(xintercept = 0), color = 'grey', size = 1, linetype = 'dashed') + 
    geom_path(data = df, size = 1) + 
    scale_color_brewer(NULL, type = 'qual', palette = 6) + 
    facet_wrap(~group)