了解为什么 tensorflow RNN 不学习玩具数据

Understanding why tensorflow RNN is not learning toy data

我正在尝试使用 Tensorflow (r0.10, python 3.5) 在一个玩具 classification 问题上训练循环神经网络,但我得到了令人困惑的结果。

我想将一个由 0 和 1 组成的序列输入 RNN,并将序列中给定元素的目标 class 设为序列的当前值和先前值所代表的数字, 视为二进制数。例如:

input sequence: [0,     0,     1,     0,     1,     1]
binary digits : [-, [0,0], [0,1], [1,0], [0,1], [1,1]]
target class  : [-,     0,     1,     2,     1,     3]

这似乎是 RNN 应该能够很容易学习的东西,但我的模型却只能区分 classes [0,2] 和 [1,3]。换句话说,它能够区分当前数字为 0 和当前数字为 1 的 classes。这让我相信 RNN 模型没有正确地学习查看先前的值( s) 的序列。

有几个教程和示例 ([1], [2], [3]) 演示了如何在 tensorflow 中构建和使用递归神经网络 (RNN),但是在研究它们之后我仍然看不出我的问题(确实如此无助于所有示例都使用文本作为源数据)。

我将我的数据作为长度为 T 的列表输入到 tf.nn.rnn(),其元素是 [batch_size x input_size] 序列。由于我的序列是一维的,input_size 等于一维,所以基本上我相信我正在输入长度为 batch_size 的序列列表(documentation 我不清楚哪个维度是被视为时间维度)。 这样理解对吗?如果是这样,那我不明白为什么 RNN 模型没有正确学习。

很难得到一小部分代码可以运行通过我的完整RNN,这是我能做的最好的(它主要改编自the PTB model here and the char-rnn model here):

import tensorflow as tf
import numpy as np

input_size = 1
batch_size = 50
T = 2
lstm_size = 5
lstm_layers = 2
num_classes = 4
learning_rate = 0.1

lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=True)
lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * lstm_layers, state_is_tuple=True)

x = tf.placeholder(tf.float32, [T, batch_size, input_size])
y = tf.placeholder(tf.int32, [T * batch_size * input_size])

init_state = lstm.zero_state(batch_size, tf.float32)

inputs = [tf.squeeze(input_, [0]) for input_ in tf.split(0,T,x)]
outputs, final_state = tf.nn.rnn(lstm, inputs, initial_state=init_state)

w = tf.Variable(tf.truncated_normal([lstm_size, num_classes]), name='softmax_w')
b = tf.Variable(tf.truncated_normal([num_classes]), name='softmax_b')

output = tf.concat(0, outputs)

logits = tf.matmul(output, w) + b

probs = tf.nn.softmax(logits)

cost = tf.reduce_mean(tf.nn.seq2seq.sequence_loss_by_example(
    [logits], [y], [tf.ones_like(y, dtype=tf.float32)]
))

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
                                  10.0)
train_op = optimizer.apply_gradients(zip(grads, tvars))

init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    curr_state = sess.run(init_state)
    for i in range(3000):
        # Create toy data where the true class is the value represented
        # by the current and previous value treated as binary, i.e.
        train_x = np.random.randint(0,2,(T * batch_size * input_size))
        train_y = train_x + np.concatenate(([0], (train_x[:-1] * 2)))

        # Reshape into T x batch_size x input_size
        train_x = np.reshape(train_x, (T, batch_size, input_size))

        feed_dict = {
            x: train_x, y: train_y
        }
        for j, (c, h) in enumerate(init_state):
            feed_dict[c] = curr_state[j].c
            feed_dict[h] = curr_state[j].h

        fetch_dict = {
            'cost': cost, 'final_state': final_state, 'train_op': train_op
        }

        # Evaluate the graph
        fetches = sess.run(fetch_dict, feed_dict=feed_dict)

        curr_state = fetches['final_state']

        if i % 300 == 0:
            print('step {}, train cost: {}'.format(i, fetches['cost']))

    # Test
    test_x = np.array([[0],[0],[1],[0],[1],[1]]*(T*batch_size*input_size))
    test_x = test_x[:(T*batch_size*input_size),:]
    probs_out = sess.run(probs, feed_dict={
            x: np.reshape(test_x, [T, batch_size, input_size]),
            init_state: curr_state
        })
    # Get the softmax outputs for the points in the sequence
    # that have [0, 0], [0, 1], [1, 0], [1, 1] as their
    # last two values.
    for i in [1, 2, 3, 5]:
        print('{}: [{:.4f} {:.4f} {:.4f} {:.4f}]'.format(
                [1, 2, 3, 5].index(i), *list(probs_out[i,:]))
             )

这里的最终输出是

0: [0.4899 0.0007 0.5080 0.0014]
1: [0.0003 0.5155 0.0009 0.4833]
2: [0.5078 0.0011 0.4889 0.0021]
3: [0.0003 0.5052 0.0009 0.4936]

表示它只是在学习区分[0,2]和[1,3]。 为什么这个模型不学习使用序列中的前一个值?

this blog post 的帮助下弄清楚了(它有输入张量的精彩图表)。事实证明我没有正确理解 tf.nn.rnn() 输入的形状:

假设您有 batch_size 个序列。每个序列有 input_size 个维度和 T 个长度(选择这些名称是为了匹配 tf.nn.rnn() here 的文档)。然后,您需要将输入拆分为 T 长度的列表,其中每个元素的形状为 batch_size x input_size这意味着您的连续序列将分布在 列表 的元素中。我认为连续的序列将保持在一起,以便列表 inputs 的每个元素都是一个序列的示例。

回想起来这是有道理的,因为我们希望通过序列并行化每个步骤,所以我们希望 运行 执行每个序列的第一步(列表中的第一个元素),然后是每个序列的第二步序列(列表中的第二个元素)等

代码的工作版本:

import tensorflow as tf
import numpy as np

sequence_size = 50
batch_size = 7
num_features = 1
lstm_size = 5
lstm_layers = 2
num_classes = 4
learning_rate = 0.1

lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=True)
lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * lstm_layers, state_is_tuple=True)

x = tf.placeholder(tf.float32, [batch_size, sequence_size, num_features])
y = tf.placeholder(tf.int32, [batch_size * sequence_size * num_features])

init_state = lstm.zero_state(batch_size, tf.float32)

inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1,sequence_size,x)]
outputs, final_state = tf.nn.rnn(lstm, inputs, initial_state=init_state)

w = tf.Variable(tf.truncated_normal([lstm_size, num_classes]), name='softmax_w')
b = tf.Variable(tf.truncated_normal([num_classes]), name='softmax_b')

output = tf.reshape(tf.concat(1, outputs), [-1, lstm_size])

logits = tf.matmul(output, w) + b

probs = tf.nn.softmax(logits)

cost = tf.reduce_mean(tf.nn.seq2seq.sequence_loss_by_example(
    [logits], [y], [tf.ones_like(y, dtype=tf.float32)]
))

# Now optimize on that cost
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
                                  10.0)
train_op = optimizer.apply_gradients(zip(grads, tvars))

init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    curr_state = sess.run(init_state)
    for i in range(3000):
        # Create toy data where the true class is the value represented
        # by the current and previous value treated as binary, i.e.
        
        train_x = np.random.randint(0,2,(batch_size * sequence_size * num_features))
        train_y = train_x + np.concatenate(([0], (train_x[:-1] * 2)))
        
        # Reshape into T x batch_size x sequence_size
        train_x = np.reshape(train_x, [batch_size, sequence_size, num_features])
        
        feed_dict = {
            x: train_x, y: train_y
        }
        for j, (c, h) in enumerate(init_state):
            feed_dict[c] = curr_state[j].c
            feed_dict[h] = curr_state[j].h
        
        fetch_dict = {
            'cost': cost, 'final_state': final_state, 'train_op': train_op
        }
        
        # Evaluate the graph
        fetches = sess.run(fetch_dict, feed_dict=feed_dict)
        
        curr_state = fetches['final_state']
        
        if i % 300 == 0:
            print('step {}, train cost: {}'.format(i, fetches['cost']))
    
    # Test
    test_x = np.array([[0],[0],[1],[0],[1],[1]]*(batch_size * sequence_size * num_features))
    test_x = test_x[:(batch_size * sequence_size * num_features),:]
    probs_out = sess.run(probs, feed_dict={
            x: np.reshape(test_x, [batch_size, sequence_size, num_features]),
            init_state: curr_state
        })
    # Get the softmax outputs for the points in the sequence
    # that have [0, 0], [0, 1], [1, 0], [1, 1] as their
    # last two values.
    for i in [1, 2, 3, 5]:
        print('{}: [{:.4f} {:.4f} {:.4f} {:.4f}]'.format(
                [1, 2, 3, 5].index(i), *list(probs_out[i,:]))
             )