确定稀疏矩阵商

Determining a sparse matrix quotient

我想在 python 2.7 中划分两个稀疏矩阵,本质上是 k = numerator / denominator,结果是 sp.csr_matrix 类型的稀疏矩阵。我正在使用 scipy as spnumpy as np

为了做到这一点,我遵循线性格式计算分子的点积和分母的倒数。两项的格式均为 sp.csr_matrix(([],([],[])),shape=[R,R]).

k 本身的计算是

k = sp.csr_matrix(numerator.dot(sp.linalg.inv(denominator)))

这样做returns警告:

SparseEfficiencyWarning: splu requires CSC matrix format
warn('splu requires CSC matrix format', SparseEfficiencyWarning)

关于确定 k 是两个稀疏矩阵之间的商,上述警告意味着什么

有没有更高效的方法生成python中的稀疏矩阵与稀疏矩阵逆的点积(两个稀疏矩阵的商)?

我以前找到过 Inverting large sparse matrices with scipy,但我想知道这是否已过时。

借用 2013 年的答案:

In [409]: a=np.random.rand(3,3)
In [410]: A=sparse.csr_matrix(a)
In [411]: np.linalg.inv(a)
Out[411]: 
array([[ 26.11275413,  -4.17749006,  -9.82626551],
       [-37.22611759,   9.38404027,  13.80073216],
       [  7.59314843,  -2.04314605,  -1.58410661]])

np inv 不是 sparse-aware:

In [412]: np.linalg.inv(A) 
 ....
LinAlgError: 0-dimensional array given. Array must be at least two-dimensional

from scipy.sparse import linalg:

In [414]: linalg.inv(A).A
/usr/lib/python3/dist-packages/scipy/sparse/linalg/dsolve/linsolve.py:243: SparseEfficiencyWarning: splu requires CSC matrix format
  warn('splu requires CSC matrix format', SparseEfficiencyWarning)
/usr/lib/python3/dist-packages/scipy/sparse/linalg/dsolve/linsolve.py:161: SparseEfficiencyWarning: spsolve is more efficient when sparse b is in the CSC matrix format
  'is in the CSC matrix format', SparseEfficiencyWarning)
Out[414]: 
array([[ 26.11275413,  -4.17749006,  -9.82626551],
       [-37.22611759,   9.38404027,  13.80073216],
       [  7.59314843,  -2.04314605,  -1.58410661]])

所以使用 csc 格式而不是 csr:

In [415]: A1=sparse.csc_matrix(a)
In [416]: linalg.inv(A1).A
Out[416]: 
array([[ 26.11275413,  -4.17749006,  -9.82626551],
       [-37.22611759,   9.38404027,  13.80073216],
       [  7.59314843,  -2.04314605,  -1.58410661]])

同样的事情,但没有稀疏警告。无需详细说明,inv 必须使用迭代列而不是行的方法。它确实 spsolve(A, I)I 是一个稀疏 eye 矩阵)。