NetworkX:如何创建加权图的关联矩阵?
NetworkX: how to create an incidence matrix of a weighted graph?
创建了这样的网格网络:
from __future__ import division
import networkx as nx
from pylab import *
import matplotlib.pyplot as plt
%pylab inline
ncols=10
N=10 #Nodes per side
G=nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
并为每条边分配了与其长度相对应的权重(在这种简单的情况下,所有长度=1):
#Weights
from math import sqrt
weights = dict()
for source, target in G.edges():
x1, y1 = pos2[source]
x2, y2 = pos2[target]
weights[(source, target)] = round((math.sqrt((x2-x1)**2 + (y2-y1)**2)),3)
for e in G.edges():
G[e[0]][e[1]] = weights[e] #Assigning weights to G.edges()
这是我的 G.edges()
的样子:(开始节点 ID、结束节点 ID、权重)
[(0, 1, 1.0),
(0, 10, 1.0),
(1, 11, 1.0),
(1, 2, 1.0),... ] #Trivial case: all weights are unitary
如何创建一个关联矩阵来考虑刚刚定义的权重?我想使用 nx.incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)
,但在这种情况下 的 weight
的正确值 是什么?
docs说weight
是代表"the edge data key used to provide each value in the matrix"的字符串,但是具体是什么意思呢?我也没找到相关的例子。
有什么想法吗?
这里是一个简单的例子,展示了如何正确设置边缘属性以及如何生成加权关联矩阵。
import networkx as nx
from math import sqrt
G = nx.grid_2d_graph(3,3)
for s, t in G.edges():
x1, y1 = s
x2, y2 = t
G[s][t]['weight']=sqrt((x2-x1)**2 + (y2-y1)**2)*42
print(nx.incidence_matrix(G,weight='weight').todense())
输出
[[ 42. 42. 42. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 42. 42. 42. 0. 0. 0. 0. 0. 0.]
[ 42. 0. 0. 0. 0. 0. 42. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 42. 42. 0. 0.]
[ 0. 42. 0. 42. 0. 0. 0. 0. 42. 0. 42. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42.]
[ 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 42.]
[ 0. 0. 42. 0. 42. 0. 0. 0. 0. 0. 0. 0.]]
如果您想要矩阵中节点和边的特定顺序,请使用 nodelist= 和 edgelist= 可选参数 networkx.indicence_matrix()。
创建了这样的网格网络:
from __future__ import division
import networkx as nx
from pylab import *
import matplotlib.pyplot as plt
%pylab inline
ncols=10
N=10 #Nodes per side
G=nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
并为每条边分配了与其长度相对应的权重(在这种简单的情况下,所有长度=1):
#Weights
from math import sqrt
weights = dict()
for source, target in G.edges():
x1, y1 = pos2[source]
x2, y2 = pos2[target]
weights[(source, target)] = round((math.sqrt((x2-x1)**2 + (y2-y1)**2)),3)
for e in G.edges():
G[e[0]][e[1]] = weights[e] #Assigning weights to G.edges()
这是我的 G.edges()
的样子:(开始节点 ID、结束节点 ID、权重)
[(0, 1, 1.0),
(0, 10, 1.0),
(1, 11, 1.0),
(1, 2, 1.0),... ] #Trivial case: all weights are unitary
如何创建一个关联矩阵来考虑刚刚定义的权重?我想使用 nx.incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)
,但在这种情况下 的 weight
的正确值 是什么?
docs说weight
是代表"the edge data key used to provide each value in the matrix"的字符串,但是具体是什么意思呢?我也没找到相关的例子。
有什么想法吗?
这里是一个简单的例子,展示了如何正确设置边缘属性以及如何生成加权关联矩阵。
import networkx as nx
from math import sqrt
G = nx.grid_2d_graph(3,3)
for s, t in G.edges():
x1, y1 = s
x2, y2 = t
G[s][t]['weight']=sqrt((x2-x1)**2 + (y2-y1)**2)*42
print(nx.incidence_matrix(G,weight='weight').todense())
输出
[[ 42. 42. 42. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 42. 42. 42. 0. 0. 0. 0. 0. 0.]
[ 42. 0. 0. 0. 0. 0. 42. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 42. 42. 0. 0.]
[ 0. 42. 0. 42. 0. 0. 0. 0. 42. 0. 42. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42.]
[ 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 42.]
[ 0. 0. 42. 0. 42. 0. 0. 0. 0. 0. 0. 0.]]
如果您想要矩阵中节点和边的特定顺序,请使用 nodelist= 和 edgelist= 可选参数 networkx.indicence_matrix()。