将列表转换为 svm 输入
Turning list to svm input
我正在使用 python 和 scikit 学习实现 svm 模型。我已经选择并转换了我的特征并将它们合并到如下所示的列表中:
[[17, 14, 14, 7, 14, 14, 14, 7, 14, 14, 1],
[14, 14, 7, 14, 14, 14, 7, 14, 14, 7, 1],
[14, 7, 14, 14, 14, 7, 14, 14, 7, 14, 1],
[7, 14, 14, 14, 7, 14, 14, 7, 14, 7, 1],
[14, 14, 14, 7, 14, 14, 7, 14, 7, 14, 1],
[14, 14, 7, 14, 14, 7, 14, 7, 14, 7, 1],
[14, 7, 14, 14, 7, 14, 7, 14, 7, 13, 1],
[7, 14, 14, 7, 14, 7, 14, 7, 13, 7, 1],
[14, 14, 7, 14, 7, 14, 7, 13, 7, 14, 1],
[14, 7, 14, 7, 14, 7, 13, 7, 14, 10, 1],
[7, 14, 7, 14, 7, 13, 7, 14, 10, 4, 1],
[14, 7, 14, 7, 13, 7, 14, 10, 4, 13, 1],
[7, 14, 7, 13, 7, 14, 10, 4, 13, 13, 1],
[14, 7, 13, 7, 14, 10, 4, 13, 13, 7, 1],
[7, 13, 7, 14, 10, 4, 13, 13, 7, 13, 1],
[13, 7, 14, 10, 4, 13, 13, 7, 13, 3, 1],
[7, 14, 10, 4, 13, 13, 7, 13, 3, 13, 1],
[14, 10, 4, 13, 13, 7, 13, 3, 13, 13, 1],
[10, 4, 13, 13, 7, 13, 3, 13, 13, 3, 1],
[4, 13, 13, 7, 13, 3, 13, 13, 3, 13, 0],
[13, 13, 7, 13, 3, 13, 13, 3, 13, 13, 0],
[13, 7, 13, 3, 13, 13, 3, 13, 13, 14, 0]]
每个元组中的最后一个数字是标签。我正在尝试找到一种方法来创建一个数据集,该数据集可以将数据和目标分开以构建模型。我在文档中找不到类似的内容。将其转回 Dataframe 会更容易吗?
谢谢!
你的意思是将特征与标签分开?如果是这样,你可以使用 numpy。
from sklearn import svm
import numpy as np
data = np.asarray(A)
X = data[:,:-1]
y = data[:,-1]
clf = svm.SVC()
clf.fit(X, y)
A为原始数据列表
我正在使用 python 和 scikit 学习实现 svm 模型。我已经选择并转换了我的特征并将它们合并到如下所示的列表中:
[[17, 14, 14, 7, 14, 14, 14, 7, 14, 14, 1],
[14, 14, 7, 14, 14, 14, 7, 14, 14, 7, 1],
[14, 7, 14, 14, 14, 7, 14, 14, 7, 14, 1],
[7, 14, 14, 14, 7, 14, 14, 7, 14, 7, 1],
[14, 14, 14, 7, 14, 14, 7, 14, 7, 14, 1],
[14, 14, 7, 14, 14, 7, 14, 7, 14, 7, 1],
[14, 7, 14, 14, 7, 14, 7, 14, 7, 13, 1],
[7, 14, 14, 7, 14, 7, 14, 7, 13, 7, 1],
[14, 14, 7, 14, 7, 14, 7, 13, 7, 14, 1],
[14, 7, 14, 7, 14, 7, 13, 7, 14, 10, 1],
[7, 14, 7, 14, 7, 13, 7, 14, 10, 4, 1],
[14, 7, 14, 7, 13, 7, 14, 10, 4, 13, 1],
[7, 14, 7, 13, 7, 14, 10, 4, 13, 13, 1],
[14, 7, 13, 7, 14, 10, 4, 13, 13, 7, 1],
[7, 13, 7, 14, 10, 4, 13, 13, 7, 13, 1],
[13, 7, 14, 10, 4, 13, 13, 7, 13, 3, 1],
[7, 14, 10, 4, 13, 13, 7, 13, 3, 13, 1],
[14, 10, 4, 13, 13, 7, 13, 3, 13, 13, 1],
[10, 4, 13, 13, 7, 13, 3, 13, 13, 3, 1],
[4, 13, 13, 7, 13, 3, 13, 13, 3, 13, 0],
[13, 13, 7, 13, 3, 13, 13, 3, 13, 13, 0],
[13, 7, 13, 3, 13, 13, 3, 13, 13, 14, 0]]
每个元组中的最后一个数字是标签。我正在尝试找到一种方法来创建一个数据集,该数据集可以将数据和目标分开以构建模型。我在文档中找不到类似的内容。将其转回 Dataframe 会更容易吗?
谢谢!
你的意思是将特征与标签分开?如果是这样,你可以使用 numpy。
from sklearn import svm
import numpy as np
data = np.asarray(A)
X = data[:,:-1]
y = data[:,-1]
clf = svm.SVC()
clf.fit(X, y)
A为原始数据列表