SPARK,DataFrame:时间戳列与连续行的差异

SPARK, DataFrame: difference of Timestamp columns over consecutive rows

我有一个 DateFrame 如下:

+---+---------------------+---------------------+
|id |initDate             |endDate              |
+---+---------------------+---------------------+
|138|2016-04-15 00:00:00.0|2016-04-28 00:00:00.0|
|138|2016-05-09 00:00:00.0|2016-05-23 00:00:00.0|
|138|2016-06-04 00:00:00.0|2016-06-18 00:00:00.0|
|138|2016-06-18 00:00:00.0|2016-07-02 00:00:00.0|
|138|2016-07-09 00:00:00.0|2016-07-23 00:00:00.0|
|138|2016-07-27 00:00:00.0|2016-08-10 00:00:00.0|
|138|2016-08-18 00:00:00.0|2016-09-01 00:00:00.0|
|138|2016-09-13 00:00:00.0|2016-09-27 00:00:00.0|
|138|2016-10-04 00:00:00.0|null                 |
+---+---------------------+---------------------+

行按 id 然后 initDate 列升序排列。 initDateendDate 列都具有时间戳类型。为了便于说明,我只显示了属于一个 id 值的记录。

我的目标是添加一个新列,为每个 id 显示 每行的 initDate 与 [=15] 之间的差异(天数) =] 上一行.

如果没有上一行,则该值为 -1。

输出应如下所示:

+---+---------------------+---------------------+----------+
|id |initDate             |endDate              |difference|
+---+---------------------+---------------------+----------+
|138|2016-04-15 00:00:00.0|2016-04-28 00:00:00.0|-1        |
|138|2016-05-09 00:00:00.0|2016-05-23 00:00:00.0|11        |
|138|2016-06-04 00:00:00.0|2016-06-18 00:00:00.0|12        |
|138|2016-06-18 00:00:00.0|2016-07-02 00:00:00.0|0         |
|138|2016-07-09 00:00:00.0|2016-07-23 00:00:00.0|7         |
|138|2016-07-27 00:00:00.0|2016-08-10 00:00:00.0|4         |
|138|2016-08-18 00:00:00.0|2016-09-01 00:00:00.0|8         |
|138|2016-09-13 00:00:00.0|2016-09-27 00:00:00.0|12        |
|138|2016-10-04 00:00:00.0|null                 |7         |
+---+---------------------+---------------------+----------+

我正在考虑使用 window 函数按 id 对记录进行分区,但我不知道如何执行后续步骤。

尝试:

import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._

val w = Window.partitionBy("id").orderBy("endDate")

df.withColumn("difference", date_sub($"initDate", lag($"endDate", 1).over(w)))

感谢@lostInOverflow 的指点,我想到了以下解决方案:

import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._

val w = Window.partitionBy("id").orderBy("initDate")
val previousEnd = lag($"endDate", 1).over(w)
filteredDF.withColumn("prev", previousEnd)
          .withColumn("difference", datediff($"initDate", $"prev"))

只是对以前好的答案的补充,以防有人想尝试使用 spark sql 或 Hive。

select tab.tran_id,tab.init_date,tab.end_date,coalesce(tab.day_diff,-1)
as day_diffrence from
(select *,datediff(day,lag(end_date,1) over(partition by tran_id order by init_date)
,init_date) as day_diff from your_table) tab
;